Heat rejection for space suit thermal control is typically achieved by sublimating water ice to vacuum. Converting the majority of a space suit's surface area into a radiator may offer an alternative means of heat rejection, thus reducing the undesirable loss of water mass to space. In this work, variable infrared (IR) emissivity electrochromic materials are considered and analyzed as a mechanism to actively modulate radiative heat rejection in the proposed full suit radiator architecture. A simplified suit geometry and lunar pole thermal environment is used to provide a first-order estimate of electrochromic performance requirements, including number of individually controllable pixels and the emissivity variation that they must be able to achieve to enable this application. In addition to several implementation considerations, two fundamental integration architecture options are presented—constant temperature and constant heat flux. With constant temperature integration, up to 48 individual pixels with an achievable emissivity range of 0.169–0.495 could be used to reject a metabolic load range of 100 W–500 W. Alternatively, with constant heat flux integration, approximately 400 pixels with an achievable emissivity range of 0.122–0.967 are required to reject the same load range in an identical external environment. Overall, the use of variable emissivity electrochromics in this capacity is shown to offer a potentially feasible solution to approach zero consumable loss thermal control in space suits.

References

References
1.
Griffin
,
B. N.
,
Spampinato
,
P.
, and
Wilde
,
R. C.
,
1999
, “
Extravehicular Activity (EVA) Systems
,”
Human Spaceflight: Mission Analysis and Design
,
W. J.
Larson
and
L. K.
Pranke
, eds.,
McGraw-Hill
,
New York
.
2.
Harris
,
G. L.
,
2001
,
The Origins and Technology of the Advanced Extravehicular Space Suit (AAS History Series)
, Vol. 24, Univelt, San Diego, CA.
3.
Farrington
,
R.
,
Rugh
,
J.
,
Bharathan
,
D.
,
Paul
,
H.
,
Bue
,
G.
, and
Trevino
,
L.
,
2005
, “
Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments
,” SAE Paper No. 2005-01-2971.
4.
Campbell
,
A. B.
,
French
,
J. D.
,
Nair
,
S. S.
,
Miles
,
J. B.
, and
Lin
,
C. H.
,
2000
, “
Thermal Analysis and Design of an Advanced Space Suit
,”
J. Thermophys. Heat Transfer
,
14
(
1
), pp.
151
160
.
5.
Ochoa
,
D. A.
,
Mirinda
,
B.
,
Conger
,
B.
, and
Trevino
,
L.
,
2006
, “
Lunar EVA Thermal Environment Challenges
,” SAE Paper No. 2006-01-2231.
6.
Race
,
M. S.
,
Criswell
,
M. E.
, and
Rummel
,
J. D.
,
2003
, “
Planetary Protection Issues in the Human Exploration of Mars
,” SAE Paper No. 2003-01-2523.
7.
Hedgeland
,
R. J.
,
Hansen
,
P. A.
, and
Hughes
,
D. W.
,
1994
, “
Integrated Approach for Contamination Control and Verification for the Hubble Space Telescope First Servicing Mission
,”
Proc. SPIE
2261
, pp. 10–21.
8.
Nabity
,
J. A.
,
Mason
,
G. R.
,
Copeland
,
R. J.
, and
Trevino
,
L. A.
,
2008
, “
A Freezable Heat Exchanger for Space Suit Radiator Systems
,” SAE Paper No. 2008-01-2111.
9.
Richardson
,
D. L.
,
1965
, “
Study and Development of Materials and Techniques for Passive Thermal Control of Flexible Extravehicular Space Garments
,” Report No. AMRL-TR-65-156.
10.
Hodgson
,
E. W.
,
Bender
,
A.
,
Goldfarb
,
J.
,
Hansen
,
H.
,
Quinn
,
G.
,
Sribnik
,
F.
, and
Thibaud-Erkey
,
C.
,
2004
, “
A Chameleon Suit to Liberate Human Exploration of Space Environments
,” NASA Institute for Advanced Concepts, Contract No. 07600-082.
11.
Metts
,
J. G.
,
Nabity
,
J. A.
, and
Klaus
,
D. M.
,
2011
, “
Theoretical Performance Analysis of Electrochromic Radiators for Space Suit Thermal Control
,”
Adv. Space Res.
,
47
(
7
), pp.
1256
1264
.
12.
Metts
,
J. G.
, and
Klaus
,
D. M.
,
2012
, “
First-Order Feasibility Analysis of a Space Suit Radiator Concept Based on Estimation of Water Mass Sublimation Using Apollo Mission Data
,”
Adv. Space Res.
,
49
(
1
), pp.
204
212
.
13.
Metts
,
J. G.
, and
Klaus
,
D. M.
,
2009
, “
Conceptual Analysis of Electrochromic Radiators for Space Suits
,” SAE Paper No. 2009-01-2570.
14.
Chandrasekhar
,
P.
,
Zay
,
B. J.
,
Birur
,
G. C.
,
Rawal
,
S.
,
Pierson
,
E. A.
,
Kauder
,
L.
, and
Swanson
,
T.
,
2002
, “
Large, Switchable Electrochromism in the Visible Through Far-Infrared in Conducting Polymer Devices
,”
Adv. Funct. Mater.
,
12
(
2
), pp.
95
103
.
15.
Kislov
,
N.
,
Groger
,
H.
, and
Ponnappan
,
R.
,
2003
, “
All-Solid-State Electrochromic Variable Emittance Coatings for Thermal Management in Space
,”
Space Technology and Applications International Forum
,
American Institute of Physics
, Albuquerque, NM, pp.
172
179
.
16.
Ashwin-Ushas Corp.
,
2014
, “
Variable Emittance Electrochromic Materials for Spacecraft Thermal Control: Our Unique, Patented Technology in a Nutshell
,” http://www.ashwin-ushas.com/EleHome/SpaceThermal/spacethermal.html (last accessed Oct. 7, 2014).
17.
Hager
,
P. B.
,
Walter
,
U.
,
Massina
,
C. J.
, and
Klaus
,
D. M.
,
2015
, “
Characterizing a Transient Heat Flux Envelope for Lunar Surface Space Suit Thermal Control Applications
,”
J. Spacecr. Rockets
, (to be published).
18.
NASA HIDH
,
2010
,
Human Integration Design Handbook
, National Aeronautics and Space Administration, Washington, DC, Report No. NASA/SP-2010-3407, Rev. Baseline.-oe23.
19.
Sompayrac
,
R.
,
Conger
,
B.
, and
Trevino
,
L.
,
2009
, “
Lunar Portable Life Support System Heat Rejection Study
,” SAE Paper No. 2009-01-2408.
20.
Izenson
,
M. G.
,
Chen
,
W.
,
Phillips
,
S.
, and
Bue
,
G.
,
2011
, “
Nonventing Thermal and Humidity Control for EVA Suits
,”
AIAA
Paper No. 2011-5260.
21.
Gilmore
,
D. G.
,
2002
,
Spacecraft Thermal Control Handbook–Volume I: Fundamental Technologies
,
The Aerospace Press
,
El Segundo, CA
.
22.
Massina
,
C. J.
,
Klaus
,
D. M.
, and
Sheth
,
R. B.
,
2014
, “
Evaluation of Heat Transfer Strategies to Incorporate a Full Suit Radiator for Thermal Control in Space Suits
,”
44th International Conference on Environmental Systems
, Tucson, AZ, Paper No. ICES-2014-089.
23.
Hager
,
P. B.
,
2013
, “
Dynamic Thermal Modeling for Moving Objects on the Moon
,” Ph.D. thesis, Technische Universität München, Munich.
24.
Granqvist
,
C. G.
,
1995
,
Handbook of Inorganic Electrochromic Materials
,
Elsevier
, Amsterdam, Chap. 1.
25.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
Hoboken, NJ
, Chaps. 12 and 13.
26.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor & Francis
, New York.
27.
Hale
,
J. S.
, and
Woollam
,
J. A.
,
1999
, “
Prospects for IR Emissivity Control Using Electrochromic Structures
,”
Thin Solid Films
,
339
(
1–2
), pp.
174
180
.
28.
Demiryont
,
H.
, and
Moorehead
,
D.
,
2009
, “
Electrochromic Emissivity Modulator for Spacecraft Thermal Management
,”
Sol. Energy Mater. Sol. Cells
,
93
(
12
), pp.
2075
2078
.
29.
Bannon
,
E. T.
,
Bower
,
C. E.
,
Sheth
,
R.
,
Stephan
,
R.
,
Chandrasekhar
,
P.
, and
Zay
,
B.
,
2010
, “
Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander
,”
AIAA
Paper No. 2010-6110.
30.
Chandrasekhar
,
P.
,
Zay
,
B. J.
,
Lawrence
,
D.
,
Caldwell
,
E.
,
Sheth
,
R.
,
Stephan
,
R.
, and
Cornwell
,
J.
,
2014
, “
Variable-Emittance Infrared Electrochromic Skins Combining Unique Conducting Polymers, Ionic Liquid Electrolytes, Microporous Polymer Membranes, and Semiconductor/Polymer Coatings, for Spacecraft Thermal Control
,”
J. Appl. Polym. Sci.
,
131
(
19
), p.
40850
.
31.
Havenith
,
G.
,
1999
, “
Heat Balance When Wearing Protective Clothing
,”
Ann. Occup. Hyg.
,
43
(
5
), pp.
289
296
.
32.
Buckey
,
J. C.
,
2006
,
Space Physiology
,
Oxford University
,
Oxford, UK
.
33.
Pitts
,
B.
,
Brensinger
,
C.
,
Saleh
,
J.
,
Carr
,
C.
,
Schmidt
,
P.
, and
Newman
,
D.
,
2001
, “
Astronaut Bio-Suit for Exploration Class Missions
,” NIAC Phase I Report, http://www.4frontiers.us/dev/assets/BioSuit-NIACPhaseIReport.pdf
34.
Tepper
,
E. H.
,
Trevino
,
L. A.
, and
Anderson
,
J. E.
,
1991
, “
Results of Shuttle EMU Thermal Vacuum Tests Incorporating an Infrared Imaging Camera Data Acquisition System
,” SAE Paper No. 911388.
35.
Guibert
,
A.
, and
Taylor
,
C. L.
,
1952
, “
Radiation Area of the Human Body
,”
J. Appl. Physiol.
,
5
(
1
), pp.
24
37
, http://jap.physiology.org/content/5/1/24.
36.
Chambers
,
A. B.
,
1970
, “
Controlling Thermal Comfort in the EVA Space Suit
,”
ASHRAE
,
12
, pp.
33
38
.
37.
Hager
,
P. B.
,
Klaus
,
D. M.
, and
Walter
,
U.
,
2014
, “
Characterizing Transient Thermal Interactions Between Lunar Regolith and Surface Spacecraft
,”
Planet. Space Sci.
,
92
, pp.
101
116
.
You do not currently have access to this content.