A significant step in the design of heating, ventilating, air conditioning, and refrigeration (HVAC-R) systems is to calculate room thermal loads. The heating/cooling loads encountered by the room often vary dynamically while the common practice in HVAC-R engineering is to calculate the loads for peak conditions and then select the refrigeration system accordingly. In this study, a self-adjusting method is proposed for real-time calculation of thermal loads. The method is based on the heat balance method (HBM) and a data-driven approach is followed. Live temperature measurements and a gradient descent optimization technique are incorporated in the model to adjust the calculations for higher accuracy. Using experimental results, it is shown that the proposed method can estimate the thermal loads with higher accuracy compared to using sheer physical properties of the room in the heat balance calculations, as is often done in design processes. Using the adjusted real-time load estimations in new and existing applications, the system performance can be optimized to provide thermal comfort while consuming less overall energy.

References

References
1.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.
2.
Chua
,
K. J.
,
Chou
,
S. K.
,
Yang
,
W. M.
, and
Yan
,
J.
,
2013
, “
Achieving Better Energy-Efficient Air Conditioning—A Review of Technologies and Strategies
,”
Appl. Energy
,
104
, pp.
87
104
.
3.
Hovgaard
,
T.
,
Larsen
,
L.
,
Skovrup
,
M.
, and
Jørgensen
,
J.
,
2011
, “
Power Consumption in Refrigeration Systems—Modeling for Optimization
,”
4th International Symposium on Advanced Control of Industrial Processes
, Hangzhou, May 23–26, pp.
234
239
.
4.
Farrington
,
R.
, and
Rugh
,
J.
,
2000
, “
Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range
,”
Earth Technologies Forum, National Renewable Energy Laboratory
, Golden, CO, Report No. NREL/CP-540-28960.
5.
Farrington
,
R.
,
Cuddy
,
M.
,
Keyser
,
M.
, and
Rugh
,
J.
,
1999
, “
Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures
,”
16th International Electric Vehicle Symposium
, Beijing, Oct. 12–16, Report No. NREL/CP-540-26615.
6.
Haines
,
R.
, and
Hittle
,
D.
,
2006
,
Control Systems for Heating, Ventilating, and Air Conditioning
,
6th ed.
,
Springer
,
New York
.
7.
Khayyam
,
H.
,
Nahavandi
,
S.
,
Hu
,
E.
,
Kouzani
,
A.
,
Chonka
,
A.
,
Abawajy
,
J.
,
Marano
,
V.
, and
Davis
,
S.
,
2011
, “
Intelligent Energy Management Control of Vehicle Air Conditioning Via Look-Ahead System
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3147
3160
.
8.
Khayyam
,
H.
,
2013
, “
Adaptive Intelligent Control of Vehicle Air Conditioning System
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1154
1161
.
9.
Arguello-Serrano
,
B.
, and
Velez-Reyes
,
M.
,
1999
, “
Nonlinear Control of a Heating, Ventilating, and Air Conditioning System With Thermal Load Estimation
,”
IEEE Trans. Control Syst. Technol.
,
7
(
1
), pp.
56
63
.
10.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2015
, “
Gray-Box Modeling and Validation of Residential HVAC System for Control System Design
,”
Appl. Energy
,
137
, pp.
134
150
.
11.
Zhu
,
Y.
,
Jin
,
X.
,
Fang
,
X.
, and
Du
,
Z.
,
2014
, “
Optimal Control of Combined Air Conditioning System With Variable Refrigerant Flow and Variable Air Volume for Energy Saving
,”
Int. J. Refrig.
,
42
, pp.
14
25
.
12.
Qureshi
,
T.
, and
Tassou
,
S.
,
1996
, “
Variable-Speed Capacity Control in Refrigeration Systems
,”
Appl. Therm. Eng.
,
16
(
2
), pp.
103
113
.
13.
ASHRAE
,
1988
,
Handbook of Fundamentals
, SI ed.,
American Society of Heating, Refrigerating and Air-Conditioning
,
Atlanta, GA
.
14.
Barnaby
,
C. S.
,
Spitler
,
J. D.
, and
Xiao
,
D.
,
2005
, “
The Residential Heat Balance Method for Heating and Cooling Load Calculations
,”
ASHRAE Trans.
,
111
(
1
), pp.
308
319
.
15.
Fayazbakhsh
,
M. A.
, and
Bahrami
,
M.
,
2013
, “
Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method
,” SAE Technical Paper No. 2013-01-1507.
16.
Arici
,
O.
,
Yang
,
S.
,
Huang
,
D.
, and
Oker
,
E.
,
1999
, “
Computer Model for Automobile Climate Control System Simulation and Application
,”
Int. J. Appl. Thermodyn.
,
2
(
2
), pp.
59
68
.
17.
Khayyam
,
H.
,
Kouzani
,
A. Z.
, and
Hu
,
E. J.
,
2009
, “
Reducing Energy Consumption of Vehicle Air Conditioning System by an Energy Management System
,”
IEEE Intelligent Vehicles Symposium
, Xi'an, China, June 3–5, pp.
752
757
.
18.
Li
,
Q.
,
Meng
,
Q.
,
Cai
,
J.
,
Yoshino
,
H.
, and
Mochida
,
A.
,
2009
, “
Predicting Hourly Cooling Load in the Building: A Comparison of Support Vector Machine and Different Artificial Neural Networks
,”
Energy Convers. Manage.
,
50
(
1
), pp.
90
96
.
19.
Kashiwagi
,
N.
, and
Tobi
,
T.
,
1993
, “
Heating and Cooling Load Prediction Using a Neural Network System
,”
International Joint Conference on Neural Networks
, IJCNN’93, Nagoya, Japan, Oct. 25–29, Vol. 1, pp.
939
942
.
20.
Ben-Nakhi
,
A. E.
, and
Mahmoud
,
M. A.
,
2004
, “
Cooling Load Prediction for Buildings Using General Regression Neural Networks
,”
Energy Convers. Manage.
,
45
(
13–14
), pp.
2127
2141
.
21.
Sousa
,
J. M.
,
Babuška
,
R.
, and
Verbruggen
,
H. B.
,
1997
, “
Fuzzy Predictive Control Applied to an Air-Conditioning System
,”
Control Eng. Pract.
,
5
(
10
), pp.
1395
1406
.
22.
Yao
,
Y.
,
Lian
,
Z.
,
Liu
,
S.
, and
Hou
,
Z.
,
2004
, “
Hourly Cooling Load Prediction by a Combined Forecasting Model Based on Analytic Hierarchy Process
,”
Int. J. Therm. Sci.
,
43
(
11
), pp.
1107
1118
.
23.
Solmaz
,
O.
,
Ozgoren
,
M.
, and
Aksoy
,
M. H.
,
2014
, “
Hourly Cooling Load Prediction of a Vehicle in the Southern Region of Turkey by Artificial Neural Network
,”
Energy Convers. Manage.
,
82
, pp.
177
187
.
24.
Fayazbakhsh
,
M. A.
,
Bagheri
,
F.
, and
Bahrami
,
M.
,
2015
, “
An Inverse Method for Calculation of Thermal Inertia and Heat Gain in Air Conditioning and Refrigeration Systems
,”
Appl. Energy
,
138
, pp.
496
504
.
25.
Wang
,
S.
, and
Xu
,
X.
,
2006
, “
Parameter Estimation of Internal Thermal Mass of Building Dynamic Models Using Genetic Algorithm
,”
Energy Convers. Manage.
,
47
(
13–14
), pp.
1927
1941
.
26.
Wang
,
S.
, and
Xu
,
X.
,
2006
, “
Simplified Building Model for Transient Thermal Performance Estimation Using GA-Based Parameter Identification
,”
Int. J. Therm. Sci.
,
45
(
4
), pp.
419
432
.
27.
Zhai
,
Z.
,
Chen
,
Q.
,
Haves
,
P.
, and
Klems
,
J. H.
,
2002
, “
On Approaches to Couple Energy Simulation and Computational Fluid Dynamics Programs
,”
Build. Environ.
,
37
(
8–9
), pp.
857
864
.
28.
Zhai
,
Z.
, and
Chen
,
Q.
,
2003
, “
Impact of Determination of Convective Heat Transfer on the Coupled Energy and CFD Simulation for Buildings
,”
8th International IBPSA Conference: Building Simulation
, Eindhoven, The Netherlands, Aug. 11–14, pp.
1467
1474
.
29.
Zhai
,
Z.
,
Chen
,
Q.
,
Klems
,
J. H.
, and
Haves
,
P.
,
2001
, “
Strategies for Coupling Energy Simulation and Computational Fluid Dynamics Programs
,”
7th International IBPSA Conference
, Rio de Janeiro, Aug. 13–15, pp.
59
66
.
30.
Zhai
,
Z.
, and
Chen
,
Q.
,
2003
, “
Solution Characters of Iterative Coupling Between Energy Simulation and CFD Programs
,”
Energy Build.
,
35
(5), pp.
493
505
.
31.
Zhai
,
Z.
, and
Yan Chen
,
Q.
,
2004
, “
Numerical Determination and Treatment of Convective Heat Transfer Coefficient in the Coupled Building Energy and CFD Simulation
,”
Build. Environ.
,
39
(
8
), pp.
1001
1009
.
32.
Zhai
,
Z. J.
, and
Chen
,
Q. Y.
,
2005
, “
Performance of Coupled Building Energy and CFD Simulations
,”
Energy Build.
,
37
(
4
), pp.
333
344
.
33.
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
34.
Lippmann
,
R. P.
,
1988
, “
An Introduction to Computing With Neural Nets
,”
ACM SIGARCH Comput. Archit. News
,
16
(
1
), pp.
7
25
.
35.
Liang
,
J.
, and
Du
,
R.
,
2005
, “
Thermal Comfort Control Based on Neural Network for HVAC Application
,”
IEEE Conference on Control Applications
, CCA 2005, Toronto, ON, Aug. 28–31, pp.
819
824
.
36.
Mehrotra
,
K.
,
Mohan
,
C.
, and
Ranka
,
S.
,
1997
,
Elements of Artificial Neural Networks
,
MIT Press
,
Cambridge, MA
.
37.
Khayyam
,
H.
,
Kouzani
,
A. Z.
,
Hu
,
E. J.
, and
Nahavandi
,
S.
,
2011
, “
Coordinated Energy Management of Vehicle Air Conditioning System
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
750
764
.
38.
Arora
,
J.
,
2004
,
Introduction to Optimum Design
,
2nd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.