Conjugate heat transfer in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a flat plate of finite thickness is one of the important problems as it mimics closely with industrial applications. The standard high Reynolds number two-equation k–ε eddy viscosity model has been used as the turbulence model. The turbulence intensity and the Reynolds number considered at the inlet are 2% and 15,000, respectively. The bottom face of the impingement plate is maintained at a constant temperature higher than the jet exit temperature and subjected with constant heat flux for the two cases considered in the study. The confinement plate is considered to be adiabatic. A parametric study has been done by analyzing the effect of nozzle-to-plate distance (4–8), Prandtl number of the fluid (0.1–100), thermal conductivity ratio of solid to fluid (1–1000), and impingement plate thickness (1–10) on distribution of solid–fluid interface temperature, bottom surface temperature (for constant heat flux case), local Nusselt number, and local heat flux. Effort has been given to relate the heat transfer behavior with the flow field. The crossover of distribution of local Nusselt number and local heat flux in a specified region when plotted for different nozzle-to-plate distances has been discussed. It is found that the Nusselt number distribution for different thermal conductivity ratios of solid-to-fluid and impingement plate thicknesses superimposed with each other indicating that the Nusselt number as a fluid flow property remains independent of solid plate properties.

References

References
1.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
2.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
3.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
4.
Dewan
,
A.
,
Dutta
,
R.
, and
Srinivasan
,
B.
,
2012
, “
Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
447
460
.10.1080/01457632.2012.614154
5.
Sparrow
,
E. M.
, and
Wong
,
T. C.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
597
605
.10.1016/0017-9310(75)90271-9
6.
Raju
,
K. S.
, and
Schlunder
,
E. U.
,
1977
, “
Heat Transfer Between an Impinging Jet and a Continuously Moving Flat Surface
,”
Thermo Fluid Dyn.
,
10
(
2
), pp.
131
136
.10.1007/BF01682706
7.
Gutmark
,
E.
,
Wolfshtein
,
M.
, and
Wygnanski
,
I.
,
1978
, “
The Plane Turbulent Impinging Jet
,”
J. Fluid Mech.
,
88
(
4
), pp.
737
756
.10.1017/S0022112078002360
8.
Pamadi
,
B. N.
, and
Belov
,
I. A.
,
1980
, “
A Note on the Heat Transfer Characteristics of Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
23
(
6
), pp.
783
787
.10.1016/0017-9310(80)90032-0
9.
Deshpande
,
M. D.
, and
Vaishnav
,
R. N.
,
1982
, “
Submerged Laminar Jet Impingement on a Plane
,”
J. Fluid Mech.
,
114
, pp.
213
236
.10.1017/S0022112082000111
10.
Wang
,
X. S.
,
Dagan
,
Z.
, and
Jiji
,
L. M.
,
1989
, “
Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface With Non-Uniform Wall Temperature or Wall Heat Flux—1. Solution for the Stagnation Region
,”
Int. J. Heat Mass Transfer
,
32
(
7
), pp.
1351
1360
.10.1016/0017-9310(89)90034-3
11.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
12.
Tu
,
C. V.
, and
Wood
,
D. H.
,
1996
, “
Wall Pressure and Shear Stress Measurements Beneath an Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
4
), pp.
364
373
.10.1016/S0894-1777(96)00093-3
13.
Voke
,
P. R.
, and
Gao
,
S.
,
1998
, “
Numerical Study of Heat Transfer From an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
671
680
.10.1016/S0017-9310(97)00243-3
14.
Yang
,
Y.
, and
Shyu
,
C.
,
1998
, “
Numerical Study of Multiple Impinging Slot Jets With an Inclined Confinement Surface
,”
Numer. Heat Transfer, Part A
,
33
(
1
), pp.
23
37
.10.1080/10407789808913926
15.
Cziesla
,
T.
,
Tandogan
,
E.
, and
Mitra
,
N. K.
,
1997
, “
Large-Eddy Simulation of Heat Transfer From Impinging Slot Jets
,”
Numer. Heat Transfer, Part A
,
32
(
1
), pp.
1
17
.10.1080/10407789708913876
16.
Chattopadhyay
,
H.
,
Biswas
,
G.
, and
Mitra
,
N. K.
,
2002
, “
Heat Transfer From a Moving Surface Due to Impinging Slot Jets
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
433
440
.10.1115/1.1470489
17.
Tong
,
A. Y.
,
2003
, “
A Numerical Study on the Hydrodynamics and Heat Transfer of a Circular Liquid Jet Impinging Onto a Substrate
,”
Numer. Heat Transfer, Part A
,
44
(
1
), pp.
1
19
.10.1080/713838171
18.
Sharif
,
M. A. R.
, and
Banerjee
,
A.
,
2009
, “
Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
532
540
.10.1016/j.applthermaleng.2008.03.011
19.
Koseoglu
,
M. F.
, and
Baskaya
,
S.
,
2009
, “
Experimental and Numerical Investigation of Natural Convection Effects on Confined Impinging Jet Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1326
1336
.10.1016/j.ijheatmasstransfer.2008.07.051
20.
Yang
,
Y.
,
Wei
,
T.
, and
Wang
,
Y.
,
2011
, “
Numerical Study of Turbulent Slot Jet Impingement Cooling on a Semi-Circular Concave Surface
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
482
489
.10.1016/j.ijheatmasstransfer.2010.09.021
21.
Wang
,
X. S.
,
Dagan
,
Z.
, and
Jiji
,
L. M.
,
1989
, “
Conjugate Heat Transfer Between a Laminar Impinging Liquid Jet and a Solid Disk
,”
Int. J. Heat Mass Transfer
,
32
(
11
), pp.
2189
2197
.10.1016/0017-9310(89)90125-7
22.
Rahman
,
M. M.
,
Bula
,
A. J.
, and
Leland
,
J. E.
,
1999
, “
Conjugate Heat Transfer During Free Jet Impingement of a High Prandtl Number Fluid
,”
Numer. Heat Transfer, Part B
,
36
(
2
), pp.
139
162
.10.1080/104077999275695
23.
Yang
,
Y.
, and
Tsai
,
S.
,
2007
, “
Numerical Study of Transient Conjugate Heat Transfer of a Turbulent Impinging Jet
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
799
807
.10.1016/j.ijheatmasstransfer.2006.08.022
24.
Rahman
,
M. M.
,
Lallave
,
J. C.
, and
Kumar
,
A.
,
2008
, “
Heat Transfer From a Spinning Disk During Semi-Confined Axial Impingement From a Rotating Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4400
4414
.10.1016/j.ijheatmasstransfer.2008.01.023
25.
Rahman
,
M. M.
, and
Lallave
,
J. C.
,
2009
, “
Transient Conjugate Heat Transfer During Free Liquid Jet Impingement on a Rotating Solid Disk
,”
Numer. Heat Transfer, Part A
,
55
(
3
), pp.
229
251
.10.1080/10407780802628987
26.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S. S.
,
2011
, “
Conjugate Heat Transfer From a Flat Plate With Shower Head Impinging Jets
,”
Front. Heat Mass Transfer
,
2
(
1
), p.
013008
.10.5098/hmt.v2.1.3008
27.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Launder
,
B. E.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment—II. An Examination of the Performance of Four Turbulence Models
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2685
2697
.10.1016/S0017-9310(05)80205-4
28.
Hosseinalipour
,
S. M.
, and
Mujumdar
,
A. S.
,
1995
, “
Comparative Evaluation of Different Turbulence Models for Confined Impinging and Opposing Jet Flows
,”
Numer. Heat Transfer, Part A
,
28
(
6
), pp.
647
666
.10.1080/10407789508913767
29.
Ichimiya
,
K.
, and
Hosaka
,
N.
,
1989
, “
Experimental Study of Heat Transfer Characteristics Due to Confined Impinging Two-Dimensional Jets (Heat Transfer Experiment for Three Slot Jets)
,”
Trans. Jpn. Soc. Mech. Eng., Part B
,
55
(
518
), pp.
3210
3215
.10.1299/kikaib.55.3210
30.
Yap
,
C. R.
,
1987
, “
Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows
,” Ph.D. thesis, Faculty of Technology, University of Manchester, Manchester, UK.
31.
Seyedein
,
S. H.
,
Hasan
,
M.
, and
Mujumdar
,
A. S.
,
1995
, “
Turbulent Flow and Heat Transfer From Confined Multiple Impinging Slot Jets
,”
Numer. Heat Transfer, Part A
,
27
(
1
), pp.
35
51
.10.1080/10407789508913687
32.
Heyerichs
,
K.
, and
Pollard
,
A.
,
1996
, “
Heat Transfer in Separated and Impinging Turbulent Flows
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2385
2400
.10.1016/0017-9310(95)00347-9
33.
El-Garby
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Numerical Investigation of Jet Impingement With Cross Flow—Comparison of Yang–Shih and Standard k–ε Turbulence Models
,”
Numer. Heat Transfer, Part A
,
47
(
5
), pp.
441
469
.10.1080/10407780590891254
34.
Wang
,
S. J.
, and
Mujumdar
,
A. S.
,
2005
, “
A Comparative Study of Five Low Reynolds Number k–ε Models for Impingement Heat Transfer
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
31
44
.10.1016/j.applthermaleng.2004.06.001
35.
van Heiningen
,
A. R. P.
,
1982
, “
Heat Transfer Under an Impinging Slot Jet
,” Ph.D. thesis, McGill University, Montréal, QC, Canada.
36.
Isman
,
M. K.
,
Pulat
,
E.
,
Etemoglu
,
A. B.
, and
Can
,
M.
,
2008
, “
Numerical Investigation of Turbulent Impinging Jet Cooling of a Constant Heat Flux Surface
,”
Numer. Heat Transfer, Part A
,
53
(
10
), pp.
1109
1132
.10.1080/10407780701790078
37.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
38.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
39.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1996
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Longman
,
London
.
40.
Biswas
,
G.
, and
Eswaran
,
V.
, eds.,
2002
,
Turbulent Flows: Fundamentals, Experiments and Modeling
,
IIT Kanpur Series of Advanced Texts, Narosa Publishing House
,
New Delhi
.
41.
Shi
,
Y.
,
Ray
,
M. B.
, and
Mujumdar
,
A. S.
,
2002
, “
Computational Study of Impingement Heat Transfer Under a Turbulent Slot Jet
,”
Ind. Eng. Chem. Res.
,
41
(
18
), pp.
4643
4651
.10.1021/ie020120a
42.
Luikov
,
A. V.
,
Aleksashenko
,
V. A.
, and
Aleksashenko
,
A. A.
,
1971
, “
Analytical Methods of Solution of Conjugated Problems in Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
14
(
8
), pp.
1047
1056
.10.1016/0017-9310(71)90203-1
43.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1966
, “
Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets
,”
ASME J. Heat Transfer
,
88
(
1
), pp.
101
108
.10.1115/1.3691449
44.
Cadek
,
F. F.
,
1968
, “
A Fundamental Investigation of Jet Impingement Heat Transfer
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
45.
Pramanik
,
S.
,
Achari
,
A. M.
, and
Das
,
M. K.
,
2012
, “
Numerical Simulation of a Turbulent Confined Slot Impinging Jet
,”
Ind. Eng. Chem. Res.
,
51
(
26
), pp.
9153
9163
.10.1021/ie300321f
46.
Polat
,
S.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1985
, “
Heat Transfer Distribution Under a Turbulent Impinging Jet—A Numerical Study
,”
Drying Technol.
,
3
(
1
), pp.
15
38
.10.1080/07373938508916253
47.
Seyedein
,
S. H.
,
Hasan
,
M.
, and
Mujumdar
,
A. S.
,
1994
, “
Modelling of a Single Confined Turbulent Slot Jet Impingement Using Various k–ε Turbulence Models
,”
Appl. Math. Model.
,
18
(
10
), pp.
526
537
.10.1016/0307-904X(94)90138-4
You do not currently have access to this content.