Simulating the real-time thermal behavior of rooms subject to air conditioning (AC) and refrigeration is a key to cooling load calculations. A well-established resistance–capacitance (RC) model is employed that utilizes a representative network of electric resistors and capacitors to simulate the thermal behavior of such systems. A freezer room of a restaurant is studied during its operation, and temperature measurements are used for model validation. Parametric study is performed on different properties of the system. It is shown that a reduction of 20% in the walls thermal resistivity can increase the energy consumption rate by 15%. The effect of set points on the number of compressor starts/stops is also studied, and it is shown that narrow set points can result in a steady temperature pattern in exchange for a high number of compressor starts/stops per hour. The proposed technique provides an effective tool for facilitating the thermal modeling of air conditioned and refrigerated rooms. Using this approach, engineering calculations of cooling load can be performed with outstanding simplicity and accuracy.

References

References
1.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.10.1016/j.enbuild.2007.03.007
2.
Chua
,
K. J.
,
Chou
,
S. K.
,
Yang
,
W. M.
, and
Yan
,
J.
,
2013
, “
Achieving Better Energy-Efficient Air Conditioning–A Review of Technologies and Strategies
,”
Appl. Energy
,
104
, pp.
87
104
.10.1016/j.apenergy.2012.10.037
3.
Hovgaard
,
T.
,
Larsen
,
L.
,
Skovrup
,
M.
, and
Jørgensen
,
J.
,
2011
, “
Power Consumption in Refrigeration Systems-Modeling for Optimization
,”
2011 4th International Symposium on Advanced Control of Industrial Processes
, Hangzhou, China, May 23–26, pp.
234
239
.
4.
Farrington
,
R.
, and
Rugh
,
J.
,
2000
, “
Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range
,”
Earth Technologies Forum
, pp.
1
6
.
5.
Lambert
,
M. A.
, and
Jones
,
B. J.
,
2006
, “
Automotive Adsorption Air Conditioner Powered by Exhaust Heat—Part 1: Conceptual and Embodiment Design
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
7
), pp.
959
972
.10.1243/09544070JAUTO221
6.
Farrington
,
R.
,
Cuddy
,
M.
,
Keyser
,
M.
, and
Rugh
,
J.
,
1999
, “
Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures
,”
Proceedings of the 16th Electric Vehicle Symposium
, pp.
1
9
.
7.
Ansari
,
F.
, and
Mokhtar
,
A.
,
2005
, “
A Simple Approach for Building Cooling Load Estimation
,”
Am. J. Environ. Sci.
,
1
(
3
), pp.
209
212
10.3844/ajessp.2005.209.212.
8.
Kashiwagi
,
N.
, and
Tobi
,
T.
,
1993
, “
Heating and Cooling Load Prediction Using a Neural Network System
,”
1993 International Conference on Neural Networks
(
IJCNN-93
), Nagoya, Japan, Oct. 25–29, Vol.
1
, pp.
939
942
10.1109/IJCNN.1993.714065.
9.
Ben-Nakhi
,
A. E.
, and
Mahmoud
,
M. a.
,
2004
, “
Cooling Load Prediction for Buildings Using General Regression Neural Networks
,”
Energy Convers. Manage.
,
45
(
13–14
), pp.
2127
2141
.10.1016/j.enconman.2003.10.009
10.
Wang
,
S.
, and
Xu
,
X.
,
2006
, “
Parameter Estimation of Internal Thermal Mass of Building Dynamic Models Using Genetic Algorithm
,”
Energy Convers. Manag.
,
47
(
13–14
), pp.
1927
1941
.10.1016/j.enconman.2005.09.011
11.
Wang
,
S.
, and
Xu
,
X.
,
2006
, “
Simplified Building Model for Transient Thermal Performance Estimation Using GA-Based Parameter Identification
,”
Int. J. Therm. Sci.
,
45
(
4
), pp.
419
432
.10.1016/j.ijthermalsci.2005.06.009
12.
Sousa
,
J. M.
,
Babuška
,
R.
, and
Verbruggen
,
H. B.
,
1997
, “
Fuzzy Predictive Control Applied to an Air-Conditioning System
,”
Control Eng. Pract.
,
5
(
10
), pp.
1395
1406
.10.1016/S0967-0661(97)00136-6
13.
ASHRAE
,
2009
,
Handbook of Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning
,
Atlanta, GA
.
14.
Pedersen
,
C. O.
,
Fisher
,
D. E.
, and
Liesen
,
R. J.
,
1997
, “
Development of a Heat Balance Procedure for Calculating Cooling Loads
,”
ASHRAE Trans.
,
103
, pp.
459
468
.
15.
Barnaby
,
C. S.
,
Spitler
,
J. D.
, and
Xiao
,
D.
,
2005
, “
The Residential Heat Balance Method for Heating and Cooling Load Calculations
,”
ASHRAE Trans.
,
111
(
1
), pp.
308
319
.
16.
Fayazbakhsh
,
M. A.
, and
Bahrami
,
M.
,
2013
, “
Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method
,”
SAE
International Paper No. 2013-01-150710.4271/2013-01-1507.
17.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2012
, “
A Resistance-Capacitance Network Model for the Analysis of the Interactions Between the Energy Performance of Buildings and the Urban Climate
,”
Build. Environ.
,
54
, pp.
116
125
.10.1016/j.buildenv.2012.01.023
18.
Yener
,
Y.
, and
Kakaç
,
S.
,
2008
,
Heat Conduction
,
Taylor & Francis Group
,
New York
.
19.
Ogunsola
,
O. T.
,
Song
,
L.
, and
Wang
,
G.
,
2014
, “
Development and Validation of a Time-Series Model for Real-Time Thermal Load Estimation
,”
Energy Build.
,
76
, pp.
440
449
.10.1016/j.enbuild.2014.02.075
20.
Zhao
,
R.
,
Gosselin
,
L.
,
Fafard
,
M.
, and
Ziegler
,
D. P.
,
2013
, “
Heat Transfer in Upper Part of Electrolytic Cells: Thermal Circuit and Sensitivity Analysis
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
212
225
.10.1016/j.applthermaleng.2013.02.002
21.
El-Nasr
,
A. A.
, and
El-Haggar
,
S. M.
,
1996
, “
Effective Thermal Conductivity of Heat Pipes
,”
Heat Mass Transfer
,
32
(
1–2
), pp.
97
101
.10.1007/s002310050097
22.
Moghaddam
,
S.
,
Rada
,
M.
,
Shooshtari
,
A.
,
Ohadi
,
M.
, and
Joshi
,
Y.
,
2003
, “
Evaluation of Analytical Models for Thermal Analysis and Design of Electronic Packages
,”
Microelectron. J.
,
34
(
3
), pp.
223
230
.10.1016/S0026-2692(02)00192-1
23.
Gholami
,
A.
,
Ahmadi
,
M.
, and
Bahrami
,
M.
,
2014
, “
A New Analytical Approach for Dynamic Modeling of Passive Multicomponent Cooling Systems
,”
ASME J. Electron. Packag.
,
136
(
3
), p.
031010
.10.1115/1.4027509
24.
Shi
,
W.
,
Wang
,
B.
, and
Li
,
X.
,
2005
, “
A Measurement Method of Ice Layer Thickness Based on Resistance-Capacitance Circuit for Closed Loop External Melt Ice Storage Tank
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1697
1707
.10.1016/j.applthermaleng.2004.11.009
25.
Deng
,
K.
,
Barooah
,
P.
,
Mehta
,
P. G.
, and
Meyn
,
S. P.
,
2010
, “
Building Thermal Model Reduction Via Aggregation of States
,”
American Control Conference
, pp.
5118
5123
.
26.
Haldi
,
F.
, and
Robinson
,
D.
,
2010
, “
The Impact of Occupants’ Behaviour on Urban Energy Demand
,”
BauSim 2010
, pp.
343
348
.
27.
Mezrhab
,
A.
, and
Bouzidi
,
M.
,
2006
, “
Computation of Thermal Comfort Inside a Passenger Car Compartment
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1697
1704
.10.1016/j.applthermaleng.2005.11.008
28.
Zhu
,
N.
,
Wang
,
S.
,
Ma
,
Z.
, and
Sun
,
Y.
,
2011
, “
Energy Performance and Optimal Control of Air-Conditioned Buildings With Envelopes Enhanced by Phase Change Materials
,”
Energy Convers. Manag.
,
52
(
10
), pp.
3197
3205
.10.1016/j.enconman.2011.05.011
29.
Oldewurtel
,
F.
,
Parisio
,
A.
,
Jones
,
C. N.
,
Gyalistras
,
D.
,
Gwerder
,
M.
,
Stauch
,
V.
,
Lehmann
,
B.
, and
Morari
,
M.
,
2012
, “
Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control
,”
Energy Build.
,
45
, pp.
15
27
.10.1016/j.enbuild.2011.09.022
30.
Maasoumy
,
M.
,
Razmara
,
M.
,
Shahbakhti
,
M.
, and
Vincentelli
,
A. S.
,
2014
, “
Handling Model Uncertainty in Model Predictive Control for Energy Efficient Buildings
,”
Energy Build.
,
77
, pp.
377
392
.10.1016/j.enbuild.2014.03.057
31.
Platt
,
G.
,
Li
,
J.
,
Li
,
R.
,
Poulton
,
G.
,
James
,
G.
, and
Wall
,
J.
,
2010
, “
Adaptive HVAC Zone Modeling for Sustainable Buildings
,”
Energy Build.
,
42
(
4
), pp.
412
421
.10.1016/j.enbuild.2009.10.009
32.
Allard
,
J.
, and
Heinzen
,
R.
,
1988
, “
Adaptive Defrost
,”
IEEE Trans. Ind. Appl.
,
24
(
1
), pp.
39
42
.10.1109/28.87247
33.
The MathWorks, Inc.
,
2011
,
matlab Version R2011b
,
The MathWorks, Inc.
,
Natick, MA
.
You do not currently have access to this content.