Heat and mass transfer in a planar anode-supported solid oxide fuel cell (SOFC) module, with bipolar-plate interconnect flow channels of different shapes are computationally simulated. The electrochemistry is modeled by uniform supply of volatile species (moist hydrogen) and oxidant (air) to the electrolyte surface with constant reaction rate via interconnect channels of rectangular, trapezoidal, and triangular cross sections. The governing three-dimensional equations for fluid mass, momentum, energy, and species transport, along with those for electrochemical kinetics, where the homogeneous porous-layer flow is in thermal equilibrium with the solid matrix, are coupled with the electrochemical reaction rate to properly account for the heat and mass transfer across flow-ducts and electrode-interfaces. The results highlight effects of interconnect duct shapes on lateral temperature and species distributions as well as the attendant frictional losses and heat transfer coefficients. It is seen that a relatively shallow rectangular duct offers better heat and mass transfer performance to affect improved thermal management of a planar SOFC.

References

References
1.
Sorensen
,
B.
,
2005
,
Hydrogen and Fuel Cells: Emerging Technologies and Applications
,
Elsevier
,
Oxford, UK
.
2.
Yokokawa
,
H.
,
Tu
,
H.
,
Iwanschitz
,
B.
, and
Mai
,
A.
,
2008
, “
Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability
,”
J. Power Sources
,
182
(
2
), pp.
400
412
.10.1016/j.jpowsour.2008.02.016
3.
Srinivasan
,
S.
,
2006
,
Fuel Cells: From Fundamentals to Applications
,
Springer
,
Boston, MA
.
4.
Sammes
,
N. M.
,
2006
,
Fuel Cell Technology: Reaching Towards Commercialization
,
Springer
,
London, UK
.10.1007/1-84628-207-1
5.
Yamamoto
,
O
.,
2000
, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
,
45
(
15–16
), pp.
2423
2435
.10.1016/S0013-4686(00)00330-3
6.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier, Oxford
,
UK
.
7.
Yokokawa
,
H.
,
Sakai
,
N.
,
Horita
,
T.
, and
Yamaji
,
K.
,
2001
, “
Recent Developments in Solid Oxide Fuel Cell Materials
,”
Fuel Cells
,
1
(
2
), pp.
117
131
.10.1002/1615-6854(200107)1:2<117::AID-FUCE117>3.0.CO;2-Y
8.
Steele
,
B. C. H.
, and
Heinzel
,
A.
,
2001
, “
Materials for Fuel-Cell Technologies
,”
Nature
,
414
(
6861
), pp.
345
352
.10.1038/35104620
9.
Yuan
,
J.
, and
Sundén
,
B.
,
2006
, “
Analysis of Chemically Reacting Transport Phenomena in an Anode Duct of Intermediate Temperature SOFCs
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
89
98
.10.1115/1.2173662
10.
Magar
,
Y. N.
, and
Manglik
,
R. M.
,
2007
, “
Modeling of Convective Heat and Mass Transfer Characteristics of Anode-Supported Planar Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
2
), pp.
185
193
.10.1115/1.2713781
11.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
,
2000
, “
Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
,
86
(
1–2
), pp.
423
431
.10.1016/S0378-7753(99)00444-9
12.
Ohara
,
S.
,
Maric
,
R.
,
Zhang
,
X.
,
Mukai
,
K.
,
Fukui
,
T.
,
Yoshida
,
H.
,
Inagaki
,
T.
, and
Miura
,
K.
,
2000
, “
High Performance Electrodes for Reduced Temperature Solid Oxide Fuel Cells With Doped Lanthenum Gallate Electrolyte, I. Ni-SDS Cermet Anode
,”
J. Power Sources
,
86
(
1–2
), pp.
455
458
.10.1016/S0378-7753(99)00479-6
13.
Mertens
,
J.
,
Haanappel
, V
. A. C.
,
Tropartz
,
C.
,
Herzhof
,
W.
, and
Buchkermer
,
H. P.
,
2006
, “
The Electrochemical Performance of Anode-Supported SOFCs With LSM-Type Cathodes Produced by Alternative Processing Routes
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
125
130
.10.1115/1.2173667
14.
Huang
,
H.
,
Nakamura
,
M.
,
Su
,
P.
,
Fasching
,
R.
,
Saito
,
Y.
, and
Prinz
,
F. B.
,
2007
, “
High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation
,”
J. Electrochem. Soc.
,
154
(
1
), pp.
B20
B24
.10.1149/1.2372592
15.
Fabbria
,
E.
,
Magrasóa
,
A.
, and
Pergolesi
,
D.
,
2014
, “
Low-Temperature Solid-Oxide Fuel Cells Based on Proton-Conducting Electrolytes
,”
MRS Bull.
,
39
(
9
), pp.
792
797
.10.1557/mrs.2014.191
16.
Van Gestel
,
T.
,
Sebold
,
D.
, and
Buchkremer
,
H. P.
,
2015
, “
Processing of 8YSZ and CGO Thin Film Electrolyte Layers for Intermediate- and Low-Temperature SOFCs
,”
J. Eur. Ceram. Soc.
,
35
(
5
), pp.
1505
1515
.10.1016/j.jeurceramsoc.2014.11.017
17.
Evans
,
A. M. J.
,
Stender
,
D.
,
Schneider
,
C. W.
,
Lippert
,
T.
, and
Prestat
,
M.
,
2015
, “
Low-Temperature Micro-Solid Oxide Fuel Cells With Partially Amorphous La0.6Sr0.4CoO3−δ Cathodes
,”
Adv. Energy Mater.
,
5
(
1
), p.
1400747
.10.1002/aenm.201400747
18.
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2014
, “
SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach
,”
Fuel Cells
,
14
(
2
), pp.
177
188
.10.1002/fuce.201300160
19.
Wachsmana
,
E.
,
Ishiharaa
,
T.
, and
Kilner
,
J.
,
2014
, “
Low-Temperature Solid-Oxide Fuel Cells
,”
MRS Bull.
,
39
(
9
), pp.
773
779
.10.1557/mrs.2014.192
20.
Ioselevich
,
A. S.
, and
Kornyshev
,
A. A.
,
2001
, “
Phenomenological Theory of Solid Oxide Fuel Cell Anode
,”
Fuel Cells
,
1
(
1
), pp.
40
65
.10.1002/1615-6854(200105)1:1<40::AID-FUCE40>3.0.CO;2-6
21.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J.-W.
,
2000
, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
,
131
(
1–2
), pp.
189
198
.10.1016/S0167-2738(00)00633-0
22.
Sundén
,
B.
, and
Faghri
,
M.
,
2005
,
Transport Phenomena in Fuel Cells
,
WIT Press
,
Southampton, UK
.10.2495/1-85312-840-6
23.
Andersson
,
M.
,
Paradis
,
H.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2013
, “
Three Dimensional Modeling of an Solid Oxide Fuel Cell Coupling Charge Transfer Phenomena With Transport Processes and Heat Generation
,”
Electrochim. Acta
,
109
, pp.
881
893
.10.1016/j.electacta.2013.08.018
24.
Inui
,
Y.
,
Urata
,
A.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Tanaka
,
T.
,
2006
, “
Performance Simulation of Planar SOFC Using Mixed Hydrogen and Carbon Monoxide Gases as Fuel
,”
Energy Conv. Manage.
,
47
(
13–14
), pp.
1738
1747
.10.1016/j.enconman.2005.10.014
25.
Ahmed
,
S.
,
McPheeters
,
C.
, and
Kumar
,
R.
,
1991
, “
Thermal–Hydraulic Model of a Monolithic Solid Oxide Fuel Cell
,”
J. Electrochem. Society
,
138
(
9
), pp.
2712
2718
.10.1149/1.2086042
26.
Aguiar
,
P.
,
Chadwik
,
D.
, and
Kershenbaum
,
L.
,
2002
, “
Modeling of an Indirect Internal Reforming Solid Oxide Fuel Cell
,”
Chem. Eng. Sci.
,
57
(
10
), pp.
1665
1677
.10.1016/S0009-2509(02)00058-1
27.
Greene
,
E. S.
,
Medeiros
,
M. G.
, and
Chiu
,
W. K. S.
,
2005
, “
Application of an Anode Model to Investigate Physical Parameters in an Internal Reforming Solid-Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
2
), pp.
136
140
.10.1115/1.1895925
28.
Nishimo
,
T.
,
Iwai
,
H.
, and
Suzuki
,
K.
,
2006
, “
Comprehensive Numerical Modeling and Analysis of a Cell-Based Indirect Internal Reforming Tubular SOFC
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
1
), pp.
33
44
.10.1115/1.2133804
29.
Haynes
,
C.
, and
Wepfer
,
W. J.
,
2001
, “
Characterizing Heat Transfer Within a Commercial-Grade Tubular Solid Oxide Fuel Cell for Enhanced Thermal Management
,”
Int. J. Hydrogen Energy
,
26
(
4
), pp.
369
379
.10.1016/S0360-3199(00)00051-3
30.
Iwata
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Itok
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Salaki
,
Y.
, and
Nagata
,
S.
,
2000
, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
,
132
(
3–4
), pp.
297
308
.10.1016/S0167-2738(00)00645-7
31.
D'Epifanio
,
A.
,
Fabbri
,
E.
,
Di Bartolomeo
,
E.
,
Licoccia
,
S.
, and
Traversa
,
E.
,
2008
, “
Design of BaZr0.8Y0.2O3−δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)
,”
Fuel Cells
,
8
(
1
), pp.
69
76
.10.1002/fuce.200700045
32.
Dey
,
T.
,
Das Sharma
,
A.
,
Dutta
,
A.
, and
Basu
,
R. N.
,
2014
, “
Transition Metal-Doped Yttria Stabilized Zirconia for Low Temperature Processing of Planar Anode-Supported Solid Oxide Fuel Cell
,”
J. Alloys Compd.
,
604
, pp.
151
156
.10.1016/j.jallcom.2014.03.056
33.
Van Roosamalen
,
J. A. M.
, and
Cordfunke
,
E. H. P.
,
1992
, “
Chemical Reactivity and Interdiffusion of (La/Sr) MnO3 and (Zr,Y)O2 Solid Oxide Fuel Cell Cathode and Electrolyte Meterials
,”
Solid State Ionics
,
52
(
4
), pp.
303
312
.10.1016/0167-2738(92)90177-Q
34.
Clausen
,
C.
,
Bagger
,
C.
,
Bildesorensen
,
J. B.
, and
Horsewell
,
A.
,
1994
, “
Microstructural and Microchemical Characterization of the Interface Between La0.85Sr0.15MnO3 and Y2O3-Stabilized ZrO2
,”
Solid State Ionics
,
70–71
(
Part 1
), pp.
59
64
.10.1016/0167-2738(94)90287-9
35.
Cimenti
,
M.
,
Co
,
A. C.
,
Birss
,
V. I.
, and
Hill
,
J. M.
,
2007
, “
Distortions in Electrochemical Impedance Spectroscopy Measurements Using 3-Electrode Methods in SOFC. I—Effect of Cell Geometry
,”
Fuel Cells
,
7
(
5
), pp.
364
376
.10.1002/fuce.200700019
36.
Drucea
,
J.
,
Télleza
,
H.
, and
Hyodo
,
J.
,
2014
, “
Surface Segregation and Poisoning in Materials for Low-Temperature SOFCs
,”
MRS Bull.
,
39
(
9
), pp.
810
815
.10.1557/mrs.2014.170
37.
Li
,
P.-W.
, and
Chyu
,
M. K.
,
2005
, “
Electrochemical and Transport Phenomena in Solid Oxide Fuel Cells
,”
ASME J. Heat Transfer
,
127
(
12
), pp.
1344
1362
.10.1115/1.2098828
38.
Chen
,
C. C.
,
Nasrallah
,
M. M.
, and
Anderson
,
H. U.
,
1993
, “
Synthesis and Characterization of (CeO2)0.8(SmO1.5)0.2 Thin Films From Polymeric Precursors
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3555
3560
.10.1149/1.2221125
39.
Ma
,
Y.
,
Wang
,
X.
,
Raza
,
R.
,
Muhammed
,
M.
, and
Zhu
,
B.
,
2010
, “
Thermal Stability of SDC/Na2CO3 Nanocomposite Electrolyte for Low-Temperature SOFCs
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
2580
2585
.10.1016/j.ijhydene.2009.03.052
40.
Suzuki
,
T.
,
Hasan
,
Z.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
,
2009
, “
Impact of Anode Microstructure on Solid Oxide Fuel Cells
,”
Science
,
325
(
5942
), pp.
852
855
.10.1126/science.1176404
41.
Van Roosmalen
,
J. A. M.
, and
Cordfunke
,
E. H. P.
,
1992
, “
Chemical Reactivity and Interdiffusion of (La/Sr)MnO3 and (Zr,Y)O2 Solid Oxide Fuel Cell Cathode and Electrolyte Materials
,”
Solid State Ionics
,
52
(
4
), pp.
303
312
.10.1016/0167-2738(92)90177-Q
42.
Zhou
,
Z.
,
Han
,
D.
,
Wu
,
H.
, and
Wang
,
S.
,
2014
, “
Fabrication of Planar-Type SOFC Single Cells by a Novel Vacuum Dip-Coating Method and Co-Riring/Infiltration Techniques
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2274
2278
.10.1016/j.ijhydene.2013.11.061
43.
Tanner
,
C. W.
, and
Virkar
,
A. V.
,
2003
, “
A Simple Model for Interconnect Design of Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
113
(
1
), pp.
44
56
.10.1016/S0378-7753(02)00479-2
44.
Li
,
P.-W.
,
Chen
,
S. P.
, and
Chyu
,
M. K.
,
2006
, “
To Achieve the Best Performance Through Optimization of Gas Delivery and Current Collection in Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
188
194
.10.1115/1.2174068
45.
Magar
,
Y. N.
, and
Manglik
,
R. M.
, “
Influence of Corrugated-Wall and Interrupted-Wall Interconnect Channel Geometries on Heat and Mass Transfer Characteristics of Anode-Supported Planar SOFC
,”
J. Enhanced Heat Transfer
(in press).
46.
Manglik
,
R. M.
,
2003
, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
, Chap. 14.
47.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer, Supplement 1
,
T. F.
Irvine
, Jr.
and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
.
48.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1998
, “
Numerical Modeling and Analysis of Laminar Flow Heat Transfer in Non-Circular Compact Channels
,”
Computer Simulations in Compact Heat Exchangers
,
B.
Sundén
and
M.
Faghri
, eds.,
Computational Mechanics
,
Southampton, UK
, Chap. 2.
49.
Sadasivam
,
R.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
1999
, “
Fully Developed Forced Convection Through Trapezoidal and Hexagonal Ducts
,”
Int. J. Heat Mass Transfer
,
42
(
23
), pp.
4321
4331
.10.1016/S0017-9310(99)00091-5
50.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
,
2003
, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
,
113
(
1
), pp.
109
114
.10.1016/S0378-7753(02)00487-1
51.
Cheng
,
C. H.
,
Chang
,
Y. W.
, and
Hong
,
C. W.
,
2005
, “
Multiscale Parametric Studies on the Transport Phenomena of a Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
4
), pp.
219
225
.10.1115/1.2039950
52.
Pramuanjaroenkij
,
A.
,
Kakaç
,
S.
, and
Zhou
,
X. Y.
,
2008
, “
Mathematical Analysis of Planar Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
(
10
), pp.
2547
2565
.10.1016/j.ijhydene.2008.02.043
53.
Akhtar
,
N.
,
Decent
,
S. P.
,
Loghin
,
D.
, and
Kendall
,
K.
,
2009
, “
A Three-Dimensional Numerical Model of a Single-Chamber Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
34
(
20
), pp.
8645
8663
.10.1016/j.ijhydene.2009.07.113
54.
Sohn
,
S.
,
Nam
,
J. H.
,
Jeon
,
D. H.
, and
Kim
,
C.-J.
,
2010
, “
A Micro/Macroscale Model for Intermediate Temperature Solid Oxide Fuel Cells With Prescribed Fully-Developed Axial Velocity Profiles in Gas Channels
,”
Int. J. Hydrogen Energy
,
35
(
21
), pp.
11890
11907
.10.1016/j.ijhydene.2010.08.063
55.
Kulikovsky
,
A. A.
,
2010
, “
A Simple Equation for Temperature Gradient in a Planar SOFC Stack
,”
Int. J. Hydrogen Energy
,
35
(
1
), pp.
308
312
.10.1016/j.ijhydene.2009.10.066
56.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
,
2001
, “
Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts With Different Cross-Sections
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
4047
4058
.10.1016/S0017-9310(01)00052-7
57.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
,
2003
, “
Three Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
809
821
.10.1016/S0017-9310(02)00357-5
58.
Magar
,
Y. N.
, and
Manglik
,
R. M.
,
2006
, “
Convective Cooling and Thermal Management Optimization of Planar Anode-Supported Solid Oxide Fuel Cells
,”
Thermal-Fluids & Thermal Processing Laboratory
,
University of CIncinnati
,
Cincinnati, OH
, Report No. TFTPL-14.
59.
Lide
,
D. R.
, and
Frederikse
,
H. P. R.
,
1995
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
60.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
61.
Majumdar
,
P.
,
2005
,
Computational Methods for Heat and Mass Transfer
,
Taylor & Francis
,
New York
.
62.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
63.
Chase
,
M. W.
, Jr.
,
Davies
,
C. A.
,
Downey
,
J. R.
, Jr.
,
Frurip
,
D. J.
,
McDonald
,
R. A.
, and
Syverud
,
A. N.
,
1985
, “
JANAF Thermochemical Tables
,”
Journal of Physical and Chemical Reference Data
, 3rd ed., Vol. 14, Supplement 1.
64.
Simwonis
,
D.
,
Thülen
,
H.
,
Dias
,
F. J.
,
Naoumidis
,
A.
, and
Stöver
,
D.
,
1999
, “
Properties of Ni/YSZ Porous Cermets for SOFC Anode Substrates Prepared by Tape Casting and Coat-Mix Process
,”
J. Mater. Process. Technol.
,
92–93
, pp.
107
111
.10.1016/S0924-0136(99)00214-9
65.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1994
, “
Fully Developed Laminar Heat Transfer in Circular-Segment Ducts With Uniform Wall Temperature
,”
Numer. Heat Transfer
, A
26
(
5
), pp.
499
519
.10.1080/10407789408956006
66.
Alkam
,
M. K.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M. O.
,
2001
, “
Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
931
938
.10.1016/S0017-9310(00)00155-1
67.
Muley
,
A.
, and
Manglik
,
R. M.
,
2000
, “
Enhanced Thermal–Hydraulic Performance Optimization of Chevron Plate Heat Exchangers
,”
Int. J. Heat Exchangers
,
1
(
1
), pp.
3
18
.
68.
Yerra
,
K. K.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2007
, “
Optimization of Heat Transfer Enhancement in Single-Phase Tubeside Flows With Twisted-Tape Inserts
,”
Int. J. Heat Exchangers
,
8
(
1
), pp.
117
138
.
You do not currently have access to this content.