Processing of glass is indeed challenging owing to its chemical passivity; it is prone to cracking while processing through mechanical and thermal modes without appropriate strategies. Near-field microwave drilling is a thermal-ablation based material removal technique of generating high heat flux in the targeted area. Glasses tend to fail quite frequently during this processing owing to thermal stresses (shock). It was therefore important to develop suitable strategies to minimize cracking during this potentially pragmatic process for microdrilling. Accordingly, in the present work, an attempt was made to change the medium of the interface at the target drilling zone through application of seven different surface precursors to influence the local heat-flow characteristics. The cracking behavior of the soda lime glass during microwave drilling in a customized applicator under controlled power input (90–900 W) at 2.45 GHz was investigated. The heat was generated inside the applicator by creating a plasma sphere in the drilling zone through a metallic concentrator. The thermal shock on the glass specimen was found reduced by the combination of a good dielectric precursor and microwave concentration for hotspot formation, which in turn, reduces the cracking/crazing tendency. Trials were carried out while drilling holes on 1.2 mm thick glass plates at various duty cycles (DCs) to study the crack intensity and pattern. The near-field microwave drilling condition was also simulated to obtain the contours of the induced stresses. The results so obtained were compared with the cracking signatures of the experimental outputs; a good correlation could be obtained. It was found that both solid and liquid fluxes as precursor could be effective to control cracking during microwave drilling.

References

References
1.
Bu
,
M.
,
Melvin
,
T.
,
Ensell
,
G. J.
,
Wilkinson
,
J. S.
, and
Evans
,
A. G.
,
2004
, “
A New Masking Technology for Deep Glass Etching and Its Microfluidic Application
,”
Sens. Actuators A
,
115
(
2
), pp.
476
482
.10.1016/j.sna.2003.12.013
2.
Zheng
,
H. Y.
, and
Lee
,
T.
,
2005
, “
Studies of CO2 Laser Peeling of Glass Substrates
,”
J. Micromech. Microeng.
,
15
(
11
), pp.
2093
2097
.10.1088/0960-1317/15/11/014
3.
Malek
,
C. K.
,
Robert
,
L.
,
Boy
,
J. J.
, and
Blind
,
P.
,
2007
, “
Deep Microstructuring in Glass for Microfluidic Applications
,”
Microsyst. Technol.
,
13
(
5–6
), pp.
447
453
.10.1007/s00542-006-0185-0
4.
Meir
,
Y.
, and
Jerby
,
E.
,
2012
, “
Localized Rapid Heating by Low-Power Solid-State Microwave Drill
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
8
), pp.
2665
2672
.10.1109/TMTT.2012.2198233
5.
Kharissova
,
O. V.
,
Kharisov
,
B. I.
, and
Valdes
,
J. J. R.
,
2010
, “
Review: The Use of Microwave Irradiation in the Processing of Glasses and Their Composites
,”
Ind. Eng. Chem. Res.
,
49
(
4
), pp.
1457
1466
.10.1021/ie9014765
6.
Doremus
,
R. H.
, and
Johnson
,
W. A.
,
1978
, “
Depths of Fracture-Initiating Flaws and Initial Stages of Crack Propagation in Glass
,”
J. Mater. Sci.
,
13
(
4
), pp.
855
858
.10.1007/BF00570523
7.
Doremus
,
R. H.
, and
Kay
,
J. F.
,
1979
, “
Initial Crack Paths in Glass: Influence of Temperature and Composition
,”
J. Mater. Sci.
,
14
(
9
), pp.
2236
2240
.10.1007/BF00688430
8.
Lawn
,
B. R.
,
Sabbs
,
T. P.
, and
Fairbanks
,
C. J.
,
1983
, “
Kinetics of Shear-Activated Indentation Crack Initiation in Soda-Lime Glass
,”
J. Mater. Sci.
,
18
(
9
), pp.
2785
2797
.10.1007/BF00547596
9.
Yang
,
B.
,
Liu
,
C. T.
,
Nieh
,
T. G.
,
Morrison
,
M. L.
,
Liaw
,
P. K.
, and
Buchanan
,
R. A.
,
2006
, “
Localized Heating and Fracture Criterion for Bulk Metallic Glasses
,”
J. Mater. Res.
,
21
(
4
), pp.
915
922
.10.1557/jmr.2006.0124
10.
Sakaue
,
K.
,
Yoneyama
,
S.
,
Kikuta
,
H.
, and
Takashi
,
M.
,
2008
, “
Evaluating Crack Tip Stress Field in a Thin Glass Plate Under Thermal Load
,”
Eng. Fract. Mech.
,
75
(
5
), pp.
1015
1026
.10.1016/j.engfracmech.2007.04.025
11.
Bahr
,
H. A.
,
Fischer
,
G.
, and
Weiss
,
H. J.
,
1986
, “
Thermal-Shock Crack Patterns Explained by Single and Multiple Crack Propagation
,”
J. Mater. Sci.
,
21
(
8
), pp.
2716
2720
.10.1007/BF00551478
12.
Zeng
,
K.
,
Breder
,
K.
, and
Rowcliffe
,
D. J.
,
1992
, “
The Hertzian Stress Field and Formation of Cone Cracks—II. Determination of Fracture Toughness
,”
Acta Metall. Mater.
,
40
(
10
), pp.
2601
2605
.10.1016/0956-7151(92)90329-D
13.
Warren
,
P. D.
,
Hills
,
D. A.
, and
Dai
,
D. N.
,
1995
, “
Mechanics of Hertzian Cracking
,”
Tribol. Int.
,
28
(
6
), pp.
357
362
.10.1016/0301-679X(95)00021-U
14.
Chen
,
S. Y.
,
Farris
,
T. N.
, and
Chandrasekhar
,
S.
,
1995
, “
Contact Mechanics of Hertzian Cone Cracking
,”
Int. J. Solids Struct.
,
32
(
3–4
), pp.
329
340
.10.1016/0020-7683(94)00127-I
15.
Liu
,
S.
,
Zhu
,
J. S.
,
Hu
,
J. M.
, and
Pao
,
Y. H.
,
1995
, “
Investigation of Crack Propagation in Ceramic Conductive Epoxy/Glass Systems
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
18
(
3
), pp.
627
633
.10.1109/95.465162
16.
Chai
,
H.
,
2006
, “
Crack Propagation in Glass Coatings Under Expanding Spherical Contact
,”
J. Mech. Phys. Solids
,
54
(
3
), pp.
447
466
.10.1016/j.jmps.2005.10.004
17.
Cheng
,
J. Y.
,
Yen
,
M. H.
, and
Young
,
T. H.
,
2006
, “
Crack-Free Micromachining on Glass Using an Economic Q-Switched 532 nm Laser
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2420
2424
.10.1088/0960-1317/16/11/024
18.
Apel
,
E.
,
Deubener
,
J.
,
Bernard
,
A.
,
Höland
,
M.
,
Müller
,
R.
,
Kappert
,
H.
,
Rheinberger
,
V.
, and
Hölanda
,
W.
,
2008
, “
Phenomena and Mechanisms of Crack Propagation in Glass-Ceramics
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
4
), pp.
313
325
.10.1016/j.jmbbm.2007.11.005
19.
Bradt
,
R. C.
,
2011
, “
The Fractography and Crack Patterns of Broken Glass
,”
J. Failure Anal. Prev.
,
11
(
2
), pp.
79
96
.10.1007/s11668-011-9432-5
20.
Geyer
,
J. F.
, and
Nasser
,
S. N.
,
1982
, “
Experimental Investigation of Thermally Induced Interacting Cracks in Brittle Solids
,”
Int. J. Solids Struct.
,
18
(
4
), pp.
349
356
.10.1016/0020-7683(82)90059-2
21.
Lentini
,
J. J.
,
1992
, “
Behavior of Glass at Elevated Temperatures
,”
J. Forensic Sci.
,
37
(
5
), pp.
1358
1362
.10.1520/JFS13325J
22.
Kulawansa
,
D. M.
,
Jensen
,
L. C.
,
Langford
,
S. C.
,
Dickinson
,
J. T.
, and
Watanabe
,
Y.
,
1994
, “
Scanning Tunneling Microscope Observations of the Mirror Region of Silicate Glass Fracture Surfaces
,”
J. Mater. Res.
,
9
(
2
), pp.
476
485
.10.1557/JMR.1994.0476
23.
Rabinovitch
,
A.
, and
Bahat
,
D.
,
2008
, “
Mirror–Mist Transition in Brittle Fracture
,”
Phys. Rev.
,
78
(
6
), p.
067102
.10.1103/physRevE.78.067102
24.
Li
,
K.
, and
Liao
,
T. W.
,
1996
, “
Surface/Subsurface Damage and the Fracture Strength of Ground Ceramics
,”
J. Mater. Process. Technol.
,
57
(
3–4
), pp.
207
220
.10.1016/0924-0136(95)02090-X
25.
Zeng
,
K.
,
Breder
,
K.
, and
Rowcliffe
,
D. J.
,
1992
, “
The Hertzian Stress Field and Formation of Cone Cracks—I. Determination of Fracture Toughness
,”
Acta Metall. Mater.
,
40
(
10
), pp.
2595
2600
.10.1016/0956-7151(92)90328-C
26.
Yuse
,
A.
, and
Sano
,
M.
,
1997
, “
Instabilities of Quasi-Static Crack Patterns in Quenched Glass Plates
,”
Phys. D
,
108
(
4
), pp.
365
378
.10.1016/S0167-2789(97)00011-0
27.
Zhang
,
Z. F.
,
Wu
,
F. F.
,
Gao
,
W.
,
Tan
,
J.
,
Wang
,
Z. G.
,
Stoica
,
M.
,
Das
,
J.
,
Eckert
,
J.
,
Shen
,
B. L.
, and
Inoue
,
A.
,
2006
, “
Wavy Cleavage Fracture of Bulk Metallic Glass
,”
Appl. Phys. Lett.
,
89
(
25
), p.
251917
.10.1063/1.2422895
28.
Jerby
,
E.
,
Dikhtyar
,
V.
,
Aktushev
,
O.
, and
Grosglick
,
U.
,
2002
, “
The Microwave Drill
,”
Science
,
298
(
5593
), pp.
587
589
.10.1126/science.1077062
29.
Jerby
,
E.
,
Aktushev
,
O.
, and
Dikhtyar
,
V.
,
2004
, “
Theoretical Analysis of the Microwave-Drill Near-Field Localized Heating Effect
,”
J. Appl. Phys.
,
97
(
3
), p.
034909
.10.1063/1.1836011
30.
Kozyrev
,
S. P.
,
Nevrovsky
,
V. A.
,
Sukhikh
,
L. L.
,
Vasin
,
V. A.
, and
Yashnov
,
Y. M.
,
1996
, “
On Microwave Discharge Machining of Ceramics
,”
17th International Symposium on Discharges and Electrical Insulation in Vacuum
, Berkeley, CA, July 21–26, pp.
1061
1064
.10.1109/DEIV.1996.545527
31.
Jerby
,
E.
,
Aktushev
,
O.
,
Dikhtyar
,
V.
,
Livshits
,
P.
,
Anaton
,
A.
,
Yacoby
,
T.
,
Flaux
,
A.
,
Inberg
,
A.
, and
Armoni
,
D.
,
2004
, “
Microwave Drill Applications for Concrete, Glass and Silicon
,”
4th World Congress Microwave & Radio-Frequency Applications
, Austin, TX, Nov. 7–12, pp.
156
165
.
32.
Brace
,
C. L.
,
2009
, “
Microwave Ablation Technology: What Every User Should Know
,”
Curr. Probl. Diagn. Radiol.
,
38
(
2
), pp.
61
67
.10.1067/j.cpradiol.2007.08.011
33.
Grosglik
,
U.
,
Dikhtyar
,
V.
, and
Jerby
,
E.
,
2002
, “
Coupled Thermal-Electromagnetic Model for Microwave Drilling
,”
European Symposium on Numerical Methods in Electromagnetics (JEE’02)
, Toulouse, France, Mar. 6–8, pp.
146
151
.
34.
Lautre
,
N. K.
,
Sharma
,
A. K.
,
Kumar
,
P.
, and
Das
,
S.
,
2014
, “
Distortions in Hole and Tool During Microwave Drilling of Perspex in a Customized Applicator
,”
International Microwave Symposium Digests
IEEE MTT-S
, Tampa, FL, June 1–6, pp.
601
603
.10.1109/MWSYM.2014.6848410
35.
Holian
,
K. S.
,
1984
,
T-4 Handbook of Material Properties Data Bases
,
Los Alamos National Laboratory
,
Los Alamos, NM
.
36.
Porada
,
M. A. W.
,
Gerdes
,
T.
, and
Rosin
,
A.
,
2012
, “
Microwave Antenna for Selective Heating of Glass Melts
,”
International Microwave Symposium Digests IEEE MTT-S
, Montreal, QC, Canada, June 17–22, pp.
1
3
.
37.
Westhoff
,
R.
, and
Szekely
,
J.
,
1991
, “
A Model of Fluid, Heat Flow, and Electromagnetic Phenomena in a Nontransferred Arc Plasma Torch
,”
J. Appl. Phys.
,
70
, pp.
3455
3466
.10.1063/1.349238
38.
Ishikawa
,
K.
,
Green
,
A. K.
, and
Pratt
,
P. L.
,
1974
, “
Interaction of a Rapidly Moving Crack With a Small Hole in Polymethylmethacrylate
,”
J. Strain Anal.
,
9
(
4
), pp.
233
237
.10.1243/03093247V094233
39.
Das
,
S.
,
Kumar
,
R.
,
George
,
T. J.
,
Bansal
,
A.
,
Lautre
,
N. K.
, and
Sharma
,
A. K.
,
2013
, “
Physics of Electrostatic Resonance With Negative Permittivity and Imaginary Index of Refraction for Illuminated Plasmoid in the Experimental Set Up for Microwave Near Field Applicator
,”
Fundam. J. Mod. Phys.
,
5
(
2
), pp.
19
46
.http://www.frdint.com/physics_of_electrostatic_resonance.pdf
You do not currently have access to this content.