This paper focused on the exergy analysis and optimization of a dehumidification desiccant wheel (DW) system. A two-dimensional unsteady state numerical model was developed for simulation of the heat and mass transfer phenomena in a representative channel of a DW matrix. The DW mathematical model was validated using a series of experimental data and parametric studies were conducted to investigate the effects of operating parameters on the DW system performance. Exergy parameters were also studied and adopted to predict the total inlet–outlet exergy and exergy destruction, as well as exergy effectivenesses. Furthermore, a new exergy effectiveness parameter was introduced based on the concept of dehumidification. Parametric studies were carried out to characterize the optimal performance of the overall system regarding exergy destruction and exergy dehumidification effectivenesses. The results demonstrate that electrical power consumption, regeneration heat, and heat and mass transfer between air and desiccant are the main sources of exergy destruction. The optimization calculation shows that at the lowest process air velocity (up = 0.2 m/s), lowest DW rotational speed (NDW = 4 Rph), highest regeneration air temperature (Ta,r,in = 140 °C), and moderate regeneration air velocity (ur = 1.7 m/s), minimum exergy destruction occurs. The optimal value of the parameters proves that, when exergy destruction effectiveness is selected as the objective function, the only regeneration air velocity is decision variable of optimization and operational limits impose on the other parameters.

References

References
1.
Wang
,
D. C.
,
Li
,
Y. H.
,
Li
,
D.
,
Xia
,
Y. Z.
, and
Zhang
,
J. P.
,
2010
, “
A Review on Adsorption Refrigeration Technology and Adsorption Deterioration in Physical Adsorption Systems
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
344
353
.10.1016/j.rser.2009.08.001
2.
Liu
,
M.
,
Shi
,
Y.
, and
Fang
,
F.
,
2014
, “
Combined Cooling, Heating and Power Systems: A Survey
,”
Renewable Sustainable Energy Rev.
,
35
, pp.
1
22
.10.1016/j.rser.2014.03.054
3.
Ge
,
T. S.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2014
, “
Review on Solar Powered Rotary Desiccant Wheel Cooling System
,”
Renew Sustain Energy Rev.
,
39
, pp.
476
497
.10.1016/j.rser.2014.07.121
4.
Daou
,
K.
,
Wang
,
R. Z.
, and
Xia
,
Z. Z.
,
2006
, “
Desiccant Cooling Air Conditioning: A Review
,”
Renewable Sustainable Energy Rev.
,
10
(
2
), pp.
55
77
.10.1016/j.rser.2004.09.010
5.
Ali Mandegari
,
M.
, and
Pahlavanzadeh
,
H.
,
2010
, “
Performance Assessment of Hybrid Desiccant Cooling System at Various Climates
,”
Energy Effic.
,
3
(
3
), pp.
177
187
.10.1007/s12053-009-9059-5
6.
La
,
D.
,
Dai
,
Y. J.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Ge
,
T. S.
,
2010
, “
Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
130
147
.10.1016/j.rser.2009.07.016
7.
Ge
,
T. S.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Dai
,
Y. J.
,
2008
, “
A Review of the Mathematical Models for Predicting Rotary Desiccant Wheel
,”
Renewable Sustainable Energy Rev.
,
12
(
6
), pp.
1485
1528
.10.1016/j.rser.2007.01.012
8.
Mandegari
,
M. A.
, and
Pahlavanzadeh
,
H.
,
2013
, “
Numerical Modeling of Two Dimensional Unsteady State Desiccant Dehumidification Channel
,”
J. Sep. Sci. Eng.
,
5
(
2
), pp.
57
66
.
9.
Mandegari
,
M. A.
,
2012
, “
Energy and Exergy Optimization of Desiccant Wheel Considering Purge Angle
,” Ph.D. thesis, Tarbiat Modares University, Tehran, Iran.
10.
Mandegari
,
M. A.
, and
Pahlavanzadeh
,
H.
,
2013
, “
A Study on the Optimization of an Air Dehumidification Desiccant System
,”
J. Therm. Sci. Eng. Appl.
,
5
(
4
), p.
041002
.10.1115/1.4023972
11.
Kanoğlu
,
M.
,
Özdinç Çarpınlıoğlu
,
M.
, and
Yıldırım
,
M.
,
2004
, “
Energy and Exergy Analyses of an Experimental Open-Cycle Desiccant Cooling System
,”
Appl. Therm. Eng.
,
24
(
5
), pp.
919
932
.10.1016/j.applthermaleng.2003.10.003
12.
Hürdoğan
,
E.
,
Buyükalaca
,
O.
,
Hepbasli
,
A.
, and
Yılmaz
,
T.
,
2011
, “
Exergetic Modeling and Experimental Performance Assessment of a Novel Desiccant Cooling System
,”
Energy Build.
,
43
(
6
), pp.
1489
1498
.10.1016/j.enbuild.2011.02.016
13.
Tu
,
R.
,
Liu
,
X.-H.
, and
Jiang
,
Y.
,
2015
, “
Lowering the Regeneration Temperature of a Rotary Wheel Dehumidification System Using Exergy Analysis
,”
Energy Convers. Manage.
,
89
(
1
), pp.
162
174
.10.1016/j.enconman.2014.09.068
14.
La
,
D.
,
Li
,
Y.
,
Dai
,
Y.
,
Ge
,
T.
, and
Wang
,
R.
,
2013
, “
Effect of Irreversible Processes on the Thermodynamic Performance of Open-Cycle Desiccant Cooling Cycles
,”
Energy Convers. Manage.
,
67
, pp.
44
56
.10.1016/j.enconman.2012.11.013
15.
Mandegari
,
M. A.
,
Pahlavanzadeh
,
H.
, and
Farzad
,
S.
,
2014
, “
Energy Approach Analysis of Desiccant Wheel Operation
,”
Energy Syst.
,
5
(
3
), pp.
551
569
.10.1007/s12667-013-0115-z
16.
Ruivo
,
C. R.
,
Costa
,
J. J.
, and
Figueiredo
,
A. R.
,
2007
, “
On the Behaviour of Hygroscopic Wheels: Part I—Channel Modeling
,”
Int. J. Heat Mass Transfer
,
50
(
23
), pp.
4812
4822
.10.1016/j.ijheatmasstransfer.2007.03.003
17.
La
,
D.
,
Li
,
Y.
,
Dai
,
Y. J.
,
Ge
,
T. S.
, and
Wang
,
R. Z.
,
2012
, “
Development of a Novel Rotary Desiccant Cooling Cycle With Isothermal Dehumidification and Regenerative Evaporative Cooling Using Thermodynamic Analysis Method
,”
Energy
,
44
(
1
), pp.
778
791
.10.1016/j.energy.2012.05.016
18.
Chung
,
J. D.
,
Lee
,
D. Y.
, and
Yoon
,
S. M.
,
2009
, “
Optimization of Desiccant Wheel Speed and Area Ratio of Regeneration to Dehumidification as a Function of Regeneration Temperature
,”
Sol. Energy
,
83
(
5
), pp.
625
635
.10.1016/j.solener.2008.10.011
19.
Dincer
,
I.
, and
Sahin
,
A. Z.
,
2004
, “
A New Model for Thermodynamic Analysis of a Drying Process
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
645
652
.10.1016/j.ijheatmasstransfer.2003.08.013
20.
Ruivo
,
C. R.
,
Costa
,
J. J.
,
Figueiredo
,
A. R.
, and
Kodama
,
A.
,
2012
, “
Effectiveness Parameters for the Prediction of the Global Performance of Desiccant Wheels—An Assessment Based on Experimental Data
,”
J. Renewable Energy
,
38
(
1
), pp.
181
187
.10.1016/j.renene.2011.07.023
21.
Dai
,
Y. J.
,
Wang
,
R. Z.
, and
Zhang
,
H. F.
,
2001
, “
Parameter Analysis to Improve Rotary Desiccant Dehumidification Using a Mathematical Model
,”
Int. J. Therm. Sci.
,
40
(
4
), pp.
400
408
.10.1016/S1290-0729(01)01224-8
22.
Kodama
,
A.
,
Hirayama
,
T.
,
Goto
,
M.
,
Hirose
,
T.
, and
Critoph
,
R. E.
,
2001
, “
The Use of Psychrometric Charts for the Optimisation of a Thermal Swing Desiccant Wheel
,”
Appl. Therm. Eng.
,
21
(
16
), pp.
1657
1674
.10.1016/S1359-4311(01)00032-1
23.
Ali Mandegari
,
M.
, and
Pahlavanzadeh
,
H.
,
2009
, “
Introduction of a New Definition for Effectiveness of Desiccant Wheels
,”
Energy
,
34
(
6
), pp.
797
803
.10.1016/j.energy.2009.03.001
24.
Kotas
,
T. J.
,
1995
,
The Exergy Method of Thermal Plant Analysis
,
Krieger
,
Melbourne, FL
.
25.
Lior
,
N.
, and
Al-Sharqawi
,
H. S.
,
2005
, “
Exergy Analysis of Flow Dehumidification by Solid Desiccants
,”
Energy
,
30
(
6
), pp.
915
931
.10.1016/j.energy.2004.04.029
26.
Sayers
,
A. T.
,
1990
,
Hydraulic and Compressible Flow Turbomachines
,
McGraw-Hill
,
London
.
27.
Pons
,
M.
, and
Kodama
,
A.
,
2000
, “
Entropic Analysis of Adsorption Open Cycles for Air Conditioning. Part 1: First and Second Law Analyses
,”
Int. J. Energy Res.
,
24
(
3
), pp.
251
262
.10.1002/(SICI)1099-114X(20000310)24:3<251::AID-ER578>3.0.CO;2-U
28.
Kodama
,
A.
,
Jin
,
W.
,
Goto
,
M.
,
Hirose
,
T.
, and
Pons
,
M.
,
2000
, “
Entropic Analysis of Adsorption Open Cycles for Air Conditioning. Part 2: Interpretation of Experimental Data
,”
Int. J. Energy Res.
,
24
(
3
), pp.
263
278
.10.1002/(SICI)1099-114X(20000310)24:3<263::AID-ER579>3.0.CO;2-M
29.
Çarpinlioglu
,
M. Ö.
, and
Yildirim
,
M.
,
2005
, “
A Methodology for the Performance Evaluation of an Experimental Desiccant Cooling System
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1400
1410
.10.1016/j.icheatmasstransfer.2005.07.008
30.
Kanoğlu
,
M.
,
Bolattürk
,
A.
, and
Altuntop
,
N.
,
2007
, “
Effect of Ambient Conditions on the First and Second Law Performance of an Open Desiccant Cooling Process
,”
J. Renewable Energy
,
32
(
6
), pp.
931
946
.10.1016/j.renene.2006.04.001
31.
Zhang
,
L. Z.
, and
Niu
,
J. L.
,
2002
, “
Performance Comparisons of Desiccant Wheels for Air Dehumidification and Enthalpy Recovery
,”
Appl. Therm. Eng.
,
22
(
12
), pp.
1347
1367
.10.1016/S1359-4311(02)00050-9
32.
Camargo
,
J. R.
,
Ebinuma
,
C. D.
, and
Silveira
,
J. L.
,
2003
, “
Thermoeconomic Analysis of an Evaporative Desiccant Air Conditioning System
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1537
1549
.10.1016/S1359-4311(03)00105-4
33.
MathWorks, 1994, http://www.mathworks.com
34.
Man
,
K.-F.
,
Tang
,
K.-S.
, and
Kwong
,
S.
,
1996
, “
Genetic Algorithms: Concepts and Applications
,”
IEEE Trans. Ind. Electron.
,
43
(
5
), pp.
519
534
.10.1109/41.538609
You do not currently have access to this content.