An experimental investigation on the heat transfer performance and pressure drop characteristics of thermally developing and hydrodynamically developed laminar flow of de-ionized (DI) water and 0.1%, 0.5%, and 0.8% concentrations of Al2O3/water nanofluid in wavy and straight minichannels was conducted. Reynolds number was varied from 700 to 1900 and two different heat fluxes of 45 kW/m2 and 65 kW/m2 were applied. The performance factor (PF) of water in wavy minichannels over their straight counterparts was higher than the nanofluids. Temperature distributions and general correlations of these minichannels are also presented.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.10.1016/0017-9310(95)00327-4
3.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
,
1999
, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
149
157
.10.1016/S0142-727X(98)10055-3
4.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
5.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
6.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
,
1998
, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6
), pp.
851
857
.10.1016/S0017-9310(97)00180-4
7.
Jiang
,
P. X.
,
Fan
,
M. H.
,
Si
,
G. S.
, and
Ren
,
Z. P.
,
2001
, “
Thermal–Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1039
1051
.10.1016/S0017-9310(00)00169-1
8.
Dominic
,
A.
,
Sarangan
,
J.
,
Suresh
,
S.
, and
Devah Dhanush
,
V. S.
,
2014
, “
An Experimental Study of Forced Convective Fluid Flow in Divergent Minichannels Using Nanofluids
,”
Appl. Mech. Mater.
,
592
, pp.
1418
1422
.10.4028/www.scientific.net/AMM.592-594.1418
9.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
ASME
Paper No. ICMM2004-2328.10.1115/ICMM2004-2328
10.
Garimella
,
S. V.
, and
Singhal
,
V.
,
2004
, “
Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
,”
Heat Transfer Eng.
,
25
(
1
), pp.
15
25
.10.1080/01457630490248241
11.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
12.
Mishan
,
Y.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Hetsroni
,
G.
,
2007
, “
Effect of Developing Flow and Thermal Regime on Momentum and Heat Transfer in Micro-Scale Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
15
), pp.
3100
3114
.10.1016/j.ijheatmasstransfer.2006.12.003
13.
Rao
,
M.
, and
Khandekar
,
S.
,
2008
, “
Thermo-Hydrodynamics of Developing Flows in a Mini-Channel Array: Liquid Crystal Thermography and Numerical Study
,” 19th National and 8th ISHMT-ASME Heat and Mass Transfer Conference, Hyderabad, India, Jan. 3–5,
ASME
Paper No. HMTC 08-0347.
14.
Mehta
,
B.
, and
Khandekar
,
S.
,
2012
, “
Infra-Red Thermography of Laminar Heat Transfer During Early Thermal Development Inside a Square Mini-Channel
,”
Exp. Thermal Fluid Sci.
,
42
, pp.
219
229
.10.1016/j.expthermflusci.2012.05.007
15.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2011
, “
Thermal Performance of Microchannels With Wavy Walls for Electronics Cooling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
1
(
7
), pp.
1029
1035
.10.1109/TCPMT.2011.2125963
16.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13
), pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
17.
Rush
,
T. A.
,
Newell
,
T. A.
, and
Jacobi
,
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1541
1553
.10.1016/S0017-9310(98)00264-6
18.
Choi
,
S. U. S.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
, Vol.
231
,
ASME
,
New York
, pp.
99
106
.
19.
Ho
,
C. J.
,
Wei
,
L. C.
, and
Li
,
Z. W.
,
2010
, “
An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
30
(
2
), pp.
96
103
.10.1016/j.applthermaleng.2009.07.003
20.
Sahin
,
B.
,
Gültekin
,
G. G.
,
Manay
,
E.
, and
Karagoz
,
S.
,
2013
, “
Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Al2O3–Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
21
28
.10.1016/j.expthermflusci.2013.04.020
21.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
22.
Liu
,
D.
, and
Yu
,
L.
,
2011
, “
Single-Phase Thermal Transport of Nanofluids in a Minichannel
,”
ASME J. Heat Transfer
,
133
(
3
), p.
031009
.10.1115/1.4002462
23.
Suresh
,
S.
,
Selvakumar
,
P.
,
Chandrasekar
,
M.
, and
Raman
,
V. S.
,
2012
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Al2O3/Water Nanofluid Under Turbulent Flow With Spiraled Rod Inserts
,”
Chem. Eng. Process.
,
53
, pp.
24
30
.10.1016/j.cep.2011.12.013
24.
Einstein
,
A.
,
1956
,
Investigations on the Theory of the Brownian Movement
,
Courier Dover Publications
,
New York
.
25.
Lee
,
S.
,
Choi
,
S. S.
,
Li
,
S. A.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
26.
Maxwell
,
J. C.
,
1954
,
A Treatise on Electricity and Magnetism
,
Dover
, New York.10.1017/CBO9780511709333
27.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), p.
100606
.10.1063/1.1896985
28.
Steele
,
W. G.
, and
Coleman
,
H. W.
,
1989
,
Experimental and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
29.
ANSI/ASME
,
1986
,
Measurement Uncertainty
,
ASME
,
New York
.
30.
Sobhan
,
C. B.
, and
Peterson
,
G. P.
,
2008
,
Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications
,
CRC Press
,
Boca Raton, FL
.
31.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
, 5th ed.,
Elsevier
,
Kidlington, Oxford
.
32.
Wibulswas
,
P.
,
1966
, “
Laminar-Flow Heat Transfer in Non-Circular Ducts
,” Doctoral dissertation, University of London, London, UK.
33.
Phillips
,
R. J.
,
1987
, “
Forced Convection, Liquid Cooled, Microchannel Heat Sinks
,” M.S. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
34.
Phillips
,
R. J.
,
1990
, “
Microchannel Heat Sinks
,”
Advances in Thermal Modeling of Electronic Components and Systems
, Vol.
2
,
Hemisphere
,
New York
, pp.
109
184
.
35.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.10.1016/0017-9310(95)00327-4
36.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.10.1016/S0017-9310(01)00175-2
37.
Jung
,
J. Y.
,
Oh
,
H. S.
, and
Kwak
,
H. Y.
,
2009
, “
Forced Convective Heat Transfer of Nanofluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1
), pp.
466
472
.10.1016/j.ijheatmasstransfer.2008.03.033
38.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Comm. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
39.
Bergman
,
T. L.
,
2009
, “
Effect of Reduced Specific Heats of Nanofluids on Single Phase, Laminar Internal Forced Convection
,”
Int. J. Heat Mass Transfer
,
52
(
5
), pp.
1240
1244
.10.1016/j.ijheatmasstransfer.2008.08.019
40.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
41.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
(
6
), pp.
36
44
.10.1016/S1369-7021(05)70936-6
You do not currently have access to this content.