Heat transfer in electronic systems is studied by simulating flow in a two pass channel with the divider representing a circuit board. Bypass holes are introduced on the circuit board to obtain detailed physical insights of the reversed flows in the second pass and thereby improve the cooling effect. The time-dependent governing equations are solved using an in-house code based on Streamline upwind/Petrov-Galerkin finite element method for Reynolds number ranging from 100 to 900. It is observed that stagnant zones are formed in the return path along the upper heated wall due to the formation of primary recirculation region on the divider plate. These stagnant zones are convected downstream by introducing bypass slots thereby enhancing the convective cooling. A parametric study on the location and number of bypass slots reveals that for a particular combination, the flow becomes unsteady thereby the heat transfer is increased. The presence of multiple slot jets also reduces the overall pressure drop required to drive the flow and heat transfer is very high at the point of impingement between the slots.

References

References
1.
Incropera
,
F.
,
Kerby
,
J.
,
Moffatt
,
D.
, and
Ramadhyani
,
S.
,
1986
, “
Convection Heat Transfer From Discrete Heat Sources in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
29
(
7
), pp.
1051
1058
.10.1016/0017-9310(86)90204-8
2.
Garimella
,
S.
, and
Eibeck
,
P.
,
1990
, “
Heat Transfer Characteristics of an Array of Protruding Elements in Single Phase Forced Convection
,”
Int. J. Heat Mass Transfer
,
33
(
12
), pp.
2659
2669
.10.1016/0017-9310(90)90202-6
3.
Young
,
T. J.
, and
Vafai
,
K.
,
1998
, “
Convective Flow and Heat Transfer in a Channel Containing Multiple Heated Obstacles
,”
Int. J. Heat Mass Transfer
,
41
(
21
), pp.
3279
3298
.10.1016/S0017-9310(98)00014-3
4.
Korichi
,
A.
, and
Oufer
,
L.
,
2005
, “
Unsteady Heat Transfer and Pressure Drop in Channels With Obtacles Mounted on the Upper and Lower Walls
,”
Numer. Heat Transfer, Part A
,
48
(
7
), pp.
711
729
.10.1080/10407780591006912
5.
Sripattanapipat
,
S.
, and
Promvonge
,
P.
,
2009
, “
Numerical Analysis of Laminar Heat Transfer in a Channel With Diamond-Shaped Baffles
,”
Int. Commun. Heat Mass Transfer
,
36
(
1
), pp.
32
38
.10.1016/j.icheatmasstransfer.2008.09.008
6.
Iacovides
,
H.
, and
Launder
,
B.
,
1995
, “
Computational Fluid Dynamics Applied to Internal Gas-Turbine Blade Cooling: A Review
,”
Int. J. Heat Fluid Flow
,
16
(
6
), pp.
454
470
.10.1016/0142-727X(95)00072-X
7.
Sunden
,
B.
, and
Xie
,
G.
,
2010
, “
Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey
,”
Heat Transfer Eng.
,
31
(
7
), pp.
527
554
.10.1080/01457630903425320
8.
Pamula
,
G.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
,
2001
, “
Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes
,”
ASME J. Turbomach.
,
123
(
2
), pp.
281
287
.10.1115/1.1343467
9.
Jeng
,
T.-M.
,
Tzeng
,
S.-C.
, and
Yang
,
Y.-C.
,
2011
, “
Detailed Measurements of Heat Transfer Coefficients in a 180-deg Rectangular Turned Channel With the Perforation Divider
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4823
4833
.10.1016/j.ijheatmasstransfer.2011.06.036
10.
Jeng
,
T.-M.
,
Tzeng
,
S.-C.
, and
Chang
,
J.-H.
,
2012
, “
Thermal Behavior in a 180-deg Turned Channel With the Perforation Divider Under Rotational Condition
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
803
810
.10.1016/j.icheatmasstransfer.2012.05.006
11.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
12.
Al-Sanea
,
S.
,
1992
, “
A Numerical Study of the Flow and Heattransfer Characteristics of an Impinging Laminar Slot-Jet Including Crossflow Effects
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2501
2513
.10.1016/0017-9310(92)90092-7
13.
Seyedein
,
S.
,
Hasan
,
M.
, and
Mujumdar
,
A.
,
1994
, “
Laminar Flow and Heat Tranfer From Multiple Impinging Slot Jets With an Inclined Confinement Surface
,”
Int. J. Heat Mass Transfer
,
37
(
13
), pp.
1867
1875
.10.1016/0017-9310(94)90327-1
14.
Yang
,
Y.-T.
, and
Shyu
,
C.-H.
,
1998
, “
Numerical Study of Multiple Impinging Slot Jets With an Inclined Confinement Surface
,”
Numer. Heat Transfer, Part A
33
(
1
), pp.
23
37
.10.1080/10407789808913926
15.
Sezai
, I
.
, and
Aldabbagh
,
L. B. Y.
,
2004
, “
Three-Dimensional Numerical Investigation of Flow and Heat Transfer Characteristics of Inline Jet Arrays
,”
Numer. Heat Transfer, Part A
,
45
(
3
), pp.
271
288
.10.1080/10407780490278571
16.
Miao
,
J.-M.
,
Wu
,
C.-Y.
, and
Chen
,
P.-H.
,
2009
, “
Numerical Investigation of Confined Multiple-Jet Impingement Cooling Over a Flat Plate At Different Crossflow Orientaions
,”
Numer. Heat Transfer, Part A
,
55
(
11
), pp.
1019
1050
.10.1080/10407780903014335
17.
Al-Hadhrami
,
L. M.
,
2010
, “
Study of Heat Transfer Distribution in a Channel With Inclined Target Surface Cooled by a Single Array of Staggered Impinging Jets
,”
Heat Transfer Eng.
,
31
(
3
), pp.
234
242
.10.1080/01457630903304665
18.
Park
,
T.
,
Choi
,
H.
,
Yoo
,
J.
, and
Kim
,
S.
,
2003
, “
Streamline Upwind Numerical Simulation of Two-Dimensional Confined Impinging Slot Jets
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
251
262
.10.1016/S0017-9310(02)00270-3
19.
Brooks
,
A. N.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
20.
Prakash
,
K. A.
,
Biswas
,
G.
, and
Kumar
,
B. R.
,
2006
, “
Thermal Hydraulics of the Spallation Target Module of an Accelerator Driven Sub-Critical System: A Numerical Study
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4633
4652
.10.1016/j.ijheatmasstransfer.2006.04.018
21.
Prakash
,
K. A.
,
Biswas
,
G.
, and
Kumar
,
B. R.
,
2007
, “
Numerical Prediction of Fluid Flow and Heat Transfer in the Target System of an Axisymmetric Accelerator-Driven Subcritical System
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
582
588
.10.1115/1.2709972
22.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1237
1248
.10.1016/S0017-9310(01)00224-1
23.
Lee
,
H.
,
Ha
,
M.
, and
Yoon
,
H.
,
2005
, “
A Numerical Study on the Fluid Flow and Heat Transfer in the Confined Jet Flow in the Presence of Magnetic Field
,”
Int. J. Heat Mass Transfer
,
48
(
25
), pp.
5297
5309
.10.1016/j.ijheatmasstransfer.2005.07.025
24.
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1994
, “
Impingement Cooling of an Isothermally Heated Surface With a Confined Slot Jet
,”
ASME J. Heat Transfer
,
116
, pp.
479
482
.10.1115/1.2911422
You do not currently have access to this content.