Total instantaneous blockage (TIB) is a severe subassembly accident in a sodium cooled fast reactor. During such an accident, a heat generating fuel pool is formed which is bounded by six neighboring subassemblies which are force-cooled by sodium. The molten fuel pool attacks the walls of the neighboring hexcan, melting them layer by layer. The rate of propagation of such damage and the temperature rise in sodium due to heat transfer from fuel pool through hexcan wall are investigated by a two-step mathematical approach. In the first step, natural convection in the fuel pool is studied by a 2D axisymmetric computational fluid dynamic model and correlations for effective conductivity as a function of internal Rayleigh number and aspect ratio have been developed. In the second step, rate of damage propagation to the hexcan wall and sodium temperature rise are predicted by a 1D transient enthalpy model. It is found that rate of damage propagation is accelerated by natural convection inside the pool. Further, the rate of heat transfer to neighboring subassembly sodium also increases due to natural convection in the pool. Eventually, the residual thickness of hexcan at the time of reactor trip is found to be insensitive to the presence/absence of natural convection in the pool.

References

References
1.
Maity
,
R. K.
,
Velusamy
,
K.
,
Selvaraj
,
P.
, and
Chellapandi
,
P.
,
2011
, “
Computational Fluid Dynamic Investigations of Partial Blockage Detection by Core-Temperature Monitoring System of a Sodium Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
241
(
12
), pp.
4994
5008
.10.1016/j.nucengdes.2011.09.023
2.
Proust
,
E.
,
Anzidei
,
L.
,
Casini
,
G.
,
Dalle Donne
,
M.
,
Giancarli
,
L.
, and
Malang
,
S.
,
1993
, “
Breeding Blanket for DEMO
,”
Fusion. Eng. Des.
,
22
(
1–2
), pp.
19
33
.10.1016/S0920-3796(05)80005-5
3.
Acharya
,
S.
, and
Goldstein
,
R. J.
,
1985
, “
Natural Convection in an Externally Heated Vertical or Inclined Square Box Containing Internal Heat Sources
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
855
866
.10.1115/1.3247514
4.
Shim
,
Y. M.
, and
Hyun
,
J. M.
,
1997
, “
Transient Confined Natural Convection With Internal Heat Generation
,”
Int. J. Heat Fluid Flow
,
18
(
3
), pp.
328
333
.10.1016/S0142-727X(97)00027-1
5.
Angirasa
,
D.
,
Pourquie
,
M. J. B. M.
, and
Nieuwstadt
,
F. T. M.
,
1992
, “
Numerical Study of Transient and Steady Laminar Buoyancy-Driven Flows and Heat Transfer in a Square Open Cavity
,”
Numer. Heat Transfer Part A
,
22
(
2
), pp.
223
239
.10.1080/10407789208944766
6.
Angirasa
,
D.
,
Eggels
,
J. G. M.
, and
Nieuwstadt
,
F. T. M.
,
1995
, “
Numerical Simulation of Transient Natural Convection From an Isothermal Cavity Open on a Side
,”
Numer. Heat Transfer Part A
,
28
(
6
), pp.
755
768
.10.1080/10407789508913773
7.
Di Piazza
,
I.
, and
Ciofalo
,
M.
,
2000
, “
Low-Prandtl Number Natural Convection in Volumetrically Heated Rectangular Enclosures I. Slender Cavity, AR = 4
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3027
3051
.10.1016/S0017-9310(99)00365-8
8.
Angirasa
,
D.
, and
Srinivasan
,
J.
,
1992
, “
Numerical Convection Heat Transfer From an Isothermal Vertical Surface to a Stable Thermally Stratified Fluid
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
917
923
.10.1115/1.2911901
9.
Filippov
,
A. S.
,
2011
, “
Numerical Simulation of Experiments on Turbulent Natural Convection of Heat Generating Liquid in Cylindrical Pool
,”
J. Eng. Thermophys.
,
20
(
1
), pp.
64
76
.10.1134/S1810232811010061
10.
Tofiqual Islam
,
Md.
,
Sumon
,
Saha.
, and
Hassan Mamum
,
Md.
,
2007
, “
Natural Convection in an Inclined Square Enclosure Containing Internal Energy Sources
,”
J. Mech. Eng.
,
ME 37
, pp.
24
32
.10.3329/jme.v37i0.816
11.
Sharma
,
A. K.
,
Velusamy
,
K.
, and
Balaji
,
C.
,
2009
, “
Turbulent Natural Convection of Sodium in a Cylindrical Enclosure With Multiple Internal Heat Sources: A Conjugate Heat Transfer Study
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2858
2870
.10.1016/j.ijheatmasstransfer.2008.11.021
12.
Alvarez
,
D.
, and
Malterre
,
P.
,
1986
, “
Natural Convection in Volume Heated Liquid Pools-the BAFOND Experiment: Proposal for New Correlations
,”
International Conference of Science and Technology of Fast Reactor Safety
, BNES, London, Vol.
1
, pp.
331
336
.
13.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1988
, “
Numerical Analysis of Binary Solid-Liquid Phase Change Using a Continuum Model
,”
Numer. Heat Transfer Part A
,
13
(
3
), pp.
277
296
.10.1080/10407788808913614
14.
Incropera
,
F. P.
,
1993
, “
Solidification of Binary Liquids: Physical Phenomena and Consequences
,”
J. Energy Heat Mass Transfer
,
15
, pp.
191
204
.
15.
Kayser
,
G.
,
Charpenel
,
J.
, and
Jamond
,
C.
,
1998
, “
Summary of the SCARBEE-N Subassembly Melting and Propagation Test With an Application to a Hypothetical Total Instantaneous Blockage in a Reactor
,”
Nucl. Sci. Eng.
,
128
(
2
), pp.
144
185
.
16.
Ravi
,
L.
,
Velusamy
,
K.
, and
Chellapandi
,
P.
,
2013
, “
A Robust Thermal Model to Investigate Radial Propagation of Core Damage Due to Total Instantaneous Blockage in SFR Fuel Subassembly
,”
Ann. Nucl. Energy
,
62
, pp.
342
356
.10.1016/j.anucene.2013.06.032
17.
Chawla
,
T. C.
,
Chasanov
,
M. G.
,
Pedersen
,
D. R.
,
Baker
,
L.
, Jr.
, and
Bingle
,
J. D.
,
1984
, “
Thermo Physical Properties of MgO, UO2, Their Eutectic Solution and Slurry of Liquid-Solid Mixtures, Concrete, Sodium, Stainless Steel and Debris Beds for Use in Molten Pool Penetration of MgO Substrate
,”
Nucl. Eng. Des.
,
80
(
1
), pp.
65
77
.10.1016/0029-5493(84)90082-7
18.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat Mass and Momentum Transfer in Three Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
19.
Voller
,
V. R.
,
1987
, “
An Implicit Enthalpy Solution for Phase Change Problems: With Application to Binary Alloy Solidification
,”
Appl. Math. Modell.
,
11
(
2
), pp.
110
116
.10.1016/0307-904X(87)90154-5
20.
Bol'shov
,
L. A.
,
Kondratenko
,
P. S.
, and
Strizhov
,
V. F.
,
2001
, “
Natural Convection in Heat Generating Fluids
,”
Phys.-Usp.
,
44
(
10
), pp.
999
1016
.10.1070/PU2001v044n10ABEH001012
You do not currently have access to this content.