In this paper, passive thermal management of an electric vehicle (EV) battery pack with phase change material (PCM) is studied numerically. When the temperature in the cells increases, and consequently in the submodule also, the heat is absorbed through melting of the cooling jacket which surrounds the cells. This, in turn, creates cooling effects in the cell and the battery pack. A finite volume based numerical model is used for the numerical simulations. The effects of different operating conditions are compared for the submodule with and without the PCM. The present results show that a more uniform temperature distribution is obtained when the PCM is employed which is in agreement with past literature and experimental data. The results also imply that the effect of PCM on cell temperature is more pronounced when the cooling system operates under transient conditions. The required time to reach the quasi-steady state temperature is less than 3 h, and it strongly depends on the heat generation rate in the cell. The maximum temperature of the system decreases from 310.9 K to 303.1 K by employing the PCM and the difference between the maximum and minimum temperatures in the submodule decreases in this way. The temperature differences are 0.17 K, 0.68 K, 5.80 K, and 13.33 K for volumetric heat generation rates of 6.885, 22.8, 63.97, and 200 kW/m3, respectively.

References

References
1.
Van Mierlo
,
J.
,
Van den Bossche
,
P.
, and
Maggetto
,
G.
,
2004
, “
Models of Energy Sources for EV and HEV: Fuel Cells, Batteries, Ultracapacitors, Flywheels and Engine-Generators
,”
J. Power Sources
,
128
(
1
), pp.
76
89
.10.1016/j.jpowsour.2003.09.048
2.
Gerssen-Gondelach
,
S. J.
, and
Faaij
,
A. P.
,
2012
, “
Performance of Batteries for Electric Vehicles on Short and Longer Term
,”
J. Power Sources
,
212
, pp.
111
129
.10.1016/j.jpowsour.2012.03.085
3.
Nelson
,
P.
,
Dees
,
D.
,
Amine
,
K.
, and
Henriksen
,
G.
,
2002
, “
Modeling Thermal Management of Lithium-Ion PNGV Batteries
,”
J. Power Sources
,
110
(
2
), pp.
349
356
.10.1016/S0378-7753(02)00197-0
4.
Sabbah
,
R.
,
Kizilel
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Active (Air-Cooled) vs. Passive (Phase Change Material) Thermal Management of High Power Lithium-Ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution
,”
J. Power Sources
,
182
(
2
), pp.
630
638
.10.1016/j.jpowsour.2008.03.082
5.
Pesaran
,
A. A.
,
Burch
,
S.
, and
Keyser
,
M.
,
1999
, “
An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs
,”
4th Vehicle Thermal Management Systems
, pp.
24
27
.
6.
Lee
,
J.
,
Choi
,
K.
,
Yao
,
N.
, and
Christianson
,
C.
,
1986
, “
Three‐Dimensional Thermal Modeling of Electric Vehicle Batteries
,”
J. Electrochem. Soc.
,
133
(
7
), pp.
1286
1291
.10.1149/1.2108855
7.
Abhat
,
A
.,
1983
, “
Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials
,”
Sol. Energy
,
30
(
4
), pp.
313
332
.10.1016/0038-092X(83)90186-X
8.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
C. R.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
9.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9
), pp.
1597
1615
.10.1016/j.enconman.2003.09.015
10.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
11.
Wu
,
M.-S.
,
Liu
,
K.
,
Wang
,
Y. Y.
, and
Wan
,
C. C.
,
2002
, “
Heat Dissipation Design for Lithium-Ion Batteries
,”
J. Power Sources
,
109
(
1
), pp.
160
166
.10.1016/S0378-7753(02)00048-4
12.
Pal
,
D.
, and
Joshi
,
Y.
,
1996
, “
Application of Phase Change Materials for Passive Thermal Control of Plastic Quad Flat Packages: A Computational Study
,”
Numer. Heat Transfer, Part A
,
30
(
1
), pp.
19
34
.10.1080/10407789608913826
13.
Gurrum
,
S. P.
,
Joshi
,
Y. K.
, and
Kim
,
J.
,
2002
, “
Thermal Management of High Temperature Pulsed Electronics Using Metallic Phase Change Materials
,”
Numer. Heat Transfer: Part A
,
42
(
8
), pp.
777
790
.10.1080/10407780290059800
14.
Duan
,
X.
, and
Naterer
,
G.
,
2010
, “
Heat Transfer in Phase Change Materials for Thermal Management of Electric Vehicle Battery Modules
,”
Int. J. Heat Mass Transfer
,
53
(
23
), pp.
5176
5182
.10.1016/j.ijheatmasstransfer.2010.07.044
15.
Ramandi
,
M.
,
Dincer
,
I.
, and
Naterer
,
G.
,
2011
, “
Heat Transfer and Thermal Management of Electric Vehicle Batteries With Phase Change Materials
,”
Heat Mass Transfer
,
47
(
7
), pp.
777
788
.10.1007/s00231-011-0766-z
16.
Javani
,
N.
,
Dincer
,
I.
, and
Naterer
,
G.
,
2012
, “
Thermodynamic Analysis of Waste Heat Recovery for Cooling Systems in Hybrid and Electric Vehicles
,”
Energy
,
46
(
1
), pp.
109
116
.10.1016/j.energy.2012.02.027
17.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2014
, “
Analysis and Optimization of Hybrid Electric Vehicle Thermal Management Systems
,”
J. Power Sources
,
247
, pp.
643
654
.10.1016/j.jpowsour.2013.08.131
18.
Javani
,
N.
,
Dincer
,
I.
,
Naterer
,
G. F.
, and
Yilbas
,
B. S.
,
2014
, “
Analysis and Optimization of a Thermal Management System With Phase Change Material for Hybrid Electric Vehicles
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
471
482
.10.1016/j.applthermaleng.2013.11.053
19.
Javani
,
N.
,
Dincer
,
I.
,
Naterer
,
G. F.
, and
Yilbas
,
B. S.
,
2014
, “
Heat Transfer and Thermal Management With PCMs in a Li-Ion Battery Cell for Electric Vehicles
,”
Int. J. Heat MassTransfer
,
72
, pp.
690
703
.10.1016/j.ijheatmasstransfer.2013.12.076
20.
Pals
,
C. R.
, and
Newman
,
J.
,
1995
, “
Thermal Modeling of the Lithium/Polymer Battery. I. Discharge Behavior of a Single Cell
,”
J. Electrochem. Soc.
,
142
(
10
), pp.
3274
3281
.10.1149/1.2049974
21.
Keyser
,
M.
,
Pesaran
,
A.
,
Mihalic
,
M.
,
Yu
,
J. S.
,
Kim
,
S. R.
,
Alamgir
,
M.
, and
Rivers
,
D.
,
2003
, “
Thermal Characterization of Advanced Lithium-Ion Polymer Cells
,”
Gen
,
1
, pp.
4
5
.
22.
Al-Hallaj
,
S.
,
Maleki
,
H.
,
Hong
,
J. S.
, and
Selman
,
J. R.
,
1999
, “
Thermal Modeling and Design Considerations of Lithium-Ion Batteries
,”
J. Power Sources
,
83
(
1
), pp.
1
8
.10.1016/S0378-7753(99)00178-0
23.
Onda
,
K.
,
Ohshima
,
T.
,
Nakayama
,
M.
,
Fukuda
,
K.
, and
Araki
,
T.
,
2006
, “
Thermal Behavior of Small Lithium-Ion Battery During Rapid Charge and Discharge Cycles
,”
J. Power Sources
,
158
(
1
), pp.
535
542
.10.1016/j.jpowsour.2005.08.049
24.
Keyser
,
M.
,
Mihalic
,
M.
,
Pesaran
,
A.
, and
Rivers
,
D.
,
2001
, “Thermal Vharacterization of Plastic Lithium-Ion Cells,” 18th International Seminar and Exhibit on Primary and Secondary Batteries, Ft. Lauderdale, FL.
25.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.10.1149/1.2113792
26.
Selman
,
J. R.
,
Al Hallaj
,
S.
,
Uchida
,
I.
, and
Hirano
,
Y.
,
2001
, “
Cooperative Research on Safety Fundamentals of Lithium Batteries
,”
J. Power Sources
,
97
, pp.
726
732
.10.1016/S0378-7753(01)00732-7
27.
Vesteeg
,
H.
, and
Malalasekera
,
W.
,
2007
, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.
28.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.10.1016/0017-9310(87)90317-6
29.
Ng
,
K. W.
,
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
,
1998
, “
Heat Transfer in Free Convection-Dominated Melting of a Phase Change Material in a Horizontal Annulus
,”
Int. Commun. Heat Mass Transfer
,
25
(
5
), pp.
631
640
.10.1016/S0735-1933(98)00050-5
30.
Khillarkar
,
D. B.
,
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
,
2000
, “
Melting of a Phase Change Material in Concentric Horizontal Annuli of Arbitrary Cross-Section
,”
Appl. Therm. Eng.
,
20
(
10
), pp.
893
912
.10.1016/S1359-4311(99)00058-7
31.
Rösler
,
F.
, and
Brüggemann
,
D.
,
2011
, “
Shell-and-Tube Type Latent Heat Thermal Energy Storage: Numerical Analysis and Comparison With Experiments
,”
Heat Mass Transfer
,
47
(
8
), pp.
1027
1033
.10.1007/s00231-011-0866-9
32.
Brent
,
A.
,
Voller
,
V.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer, Part A
,
13
(
3
), pp.
297
318
.10.1080/10407788808913615
33.
Manual
,
F.
,
2005
,
Manual and User Guide of Fluent Software
,
Fluent, Inc
.
34.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
O.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (Lhtess)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.10.1016/j.rser.2009.10.015
You do not currently have access to this content.