This paper presents a numerical model assessing the potential of ionic wind as a heat transfer enhancement method for the cooling of grid distribution assets. Distribution scale power routers (13–37 kV, 1–10 MW) have stringent requirements regarding lifetime and reliability, so that any cooling technique involving moving parts such as fans or pumps are not viable. A new heat sink design combining corona electrodes with bonded fin arrays is presented. The model of the suggested design is solved numerically. It is predicted that applying a voltage of 5 kV on the corona electrodes could increase the heat removed by a factor of five as compared to natural convection.

References

References
1.
Das
,
D.
,
Divan
,
D. M.
, and
Harley
,
R. G.
,
2010
, “
Power Flow Control in Networks Using Controllable Network Transformers
,”
IEEE Trans. Power Electron.
,
25
(
7
), pp.
1753
1760
.10.1109/TPEL.2010.2042076
2.
Warzoha
,
R.
, and
Fleischer
,
A. S.
,
2011
, “
Thermal Management of High Density Power Electronics Modules Using Dielectric Mineral Oil With Applications in the Electric Utility Field for Smart Grid Protection
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041005
.10.1115/1.4004746
3.
Loeffler
,
B. H.
,
2012
, “
Modeling and Optimization of a Thermosiphon for Passive Thermal Management Systems
,” M.Sc. ME, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
4.
Junhong
,
C.
, and
Davidson
,
J. H.
,
2002
, “
Electron Density and Energy Distributions in the Positive DC Corona: Interpretation for Corona-Enhanced Chemical Reactions
,”
Plasma Chem. Plasma Process.
,
22
(
2
), pp.
199
224
.10.1023/A:1014851908545
5.
Chen
,
J.
, and
Davidson
,
J. H.
,
2003
, “
Model of the Negative DC Corona Plasma: Comparison to the Positive DC Corona Plasma
,”
Plasma Chem. Plasma Process.
,
23
(
1
), pp.
83
102
.10.1023/A:1022468803203
6.
Yanallah
,
K.
,
Pontiga
,
F.
, and
Chen
,
J. H.
,
2013
, “
A Semi-Analytical Study of Positive Corona Discharge in Wire-Plane Electrode Configuration
,”
J. Phys. D: Appl. Phys.
,
46
(
34
), p.
345202
.10.1088/0022-3727/46/34/345202
7.
El-Khabiry
,
S.
, and
Colver
,
G. M.
,
1997
, “
Drag Reduction by DC Corona Discharge Along an Electrically Conductive Flat Plate for Small Reynolds Number Flow
,”
Phys. Fluids
,
9
(
3
), pp.
587
599
.10.1063/1.869219
8.
O'Brien
,
R. J.
, and
Shine
,
A. J.
,
1967
, “
Some Effects of an Electric Field on Heat Transfer From a Vertical Plate in Free Convection
,”
ASME J. Heat Transfer
,
89
(
1
), pp.
114
116
.10.1115/1.3614310
9.
Owsenek
,
B. L.
, and
Seyed-Yagoobi
,
J.
,
1997
, “
Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
604
610
.10.1115/1.2824148
10.
Kalman
,
H.
, and
Sher
,
E.
,
2001
, “
Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
265
282
.10.1016/S1359-4311(00)00038-7
11.
Jewell-Larsen
,
N. E.
,
Hsu
,
C. P.
,
Krichtafovitch
,
I.
,
Montgomery
,
S.
,
Dibene
,
J.
, and
Mamishev
,
A.
,
2008
, “
CFD Analysis of Electrostatic Fluid Accelerators for Forced Convection Cooling
,”
IEEE Trans. Dielectr. Electr. Insul.
,
15
(
6
), pp.
1745
1753
.10.1109/TDEI.2008.4712680
12.
Go
,
D. B.
,
Garimella
,
S. V.
, and
Fisher
,
T. S.
,
2006
, “
Numerical Simulation of Microscale Ionic Wind for Local Cooling Enhancement
,”
10th Intersociety Conference on Thermal and Thermomechanical Phenomena and Emerging Technologies in Electronic Systems
,
ITherm 2006
, San Diego, CA, May 30–June 2, pp.
45
53
.10.1109/ITHERM.2006.1645321
13.
Go
,
D. B.
,
Maturana
,
R. A.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2008
, “
Enhancement of External Forced Convection by Ionic Wind
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6047
6053
.10.1016/j.ijheatmasstransfer.2008.05.012
14.
Cagnoni
,
D.
,
Agostini
,
F.
,
Christen
,
T.
,
Parolini
,
N.
,
Stevanovic
,
I.
, and
de Falco
,
C.
,
2013
, “
Multiphysics Simulation of Corona Discharge Induced Ionic Wind
,”
J. Appl. Phys.
,
114
, p.
233301
.10.1063/1.4843823
15.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1988
,
Handbook of Heat Transfer
,
3rd ed.
,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
, eds.,
McGraw-Hill
,
New York
.
16.
Boulos
,
P. F. M. I.
, and
Pfender
,
E.
,
1994
,
Thermal Plasmas: Fundamentals and Applications
, Plenum Press, New York, p.
177
.
17.
Gallandat
,
N.
, and
Mayor
,
J. R.
,
2014
, “
Enhanced Passive Thermal Management of Grid-Scale Power Router Utilizing Ionic Wind
,”
ASME
Paper No. IMECE2014-38713.10.1115/IMECE2014-38713
18.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
116
123
.10.1115/1.3246622
19.
Ong
,
A. O.
,
Abramson
,
A. R.
, and
Tien
,
N. C.
,
2014
, “
Electrohydrodynamic Microfabricated Ionic Wind Pumps for Thermal Management Applications
,”
ASME J. Heat Transfer
,
136
(
6
), pp.
1
11
.10.1115/1.4026807
You do not currently have access to this content.