The understanding of multiple bubbles condensation is of significant importance in developing continuum models for the large-scale subcooled flow boiling. The computational fluid dynamics (CFD) modeling for multiple bubbles condensation is developed with the volume of fluid (VOF) method in this work. An explicit transient simulation is performed to solve the governing equations including the source terms for heat and mass transfer due to condensation. The geometric reconstruction scheme, which is a piecewise linear interface calculation (PLIC) method, is employed to keep the interface sharp. The surface tension is modeled by the continuum surface force (CSF) approach, which is taken into account in the numerical model. Numerical simulations predict the dynamical behavior of the actual condensing bubbles. The results show that the condensation rate of a single bubble is influenced by the velocity of the fluid flow and the temperature difference between the bubble and fluid. For multiple bubbles, the effect of bubble–bubble interaction on their condensation process is analyzed based on the numerical predictions. The condensation rate of lower bubbles increases due to the random perturbation induced by other bubbles. The influence of other bubbles on the condensation rate can be neglected if the distances between the bubbles are large enough.

References

References
1.
Revankar
,
S. T.
,
2013
, “
Heat Transfer Characteristics of Passive Condensers for Reactor Containment Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021002
.10.1115/1.4023600
2.
Kim
,
S. J.
, and
Park
,
G. C.
,
2011
, “
Interfacial Heat Transfer of Condensing Bubble in Subcooled Boiling Flow at Low Pressure
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2962
2974
.10.1016/j.ijheatmasstransfer.2011.03.001
3.
Lucas
,
D.
, and
Prasser
,
H. M.
,
2007
, “
Steam Bubble Condensation in Sub-Cooled Water in Case of Co-Current Vertical Pipe Flow
,”
Nucl. Eng. Des.
,
237
(
5
), pp.
497
508
.10.1016/j.nucengdes.2006.09.004
4.
Lucas
,
D.
,
Beyer
,
M.
, and
Szalinski
,
L.
,
2010
, “
Experimental Investigations on the Condensation of Steam Bubbles Injected Into Subcooled Water at 1 MPA
,”
Multiphase Sci. Technol.
,
22
(
1
), pp.
33
55
.10.1615/MultScienTechn.v22.i1.30
5.
Inaba
,
N.
,
Watanabe
,
N.
, and
Aritomi
,
M.
,
2013
, “
Interfacial Heat Transfer of Condensation Bubble With Consideration of Bubble Number Distribution in Subcooled Flow Boiling
,”
ASME J. Therm. Sci. Technol.
,
8
(
1
), pp.
74
90
.10.1299/jtst.8.74
6.
Tian
,
W.
,
Ishiwatari
,
Y.
,
Ikejiri
,
S.
,
Yamakawa
,
M.
, and
Oka
,
Y.
,
2010
, “
Numerical Computation of Thermally Controlled Steam Bubble Condensation Using Moving Particle Semi-Implicit (MPS) Method
,”
Ann. Nucl. Energy
,
37
(
1
), pp.
5
15
.10.1016/j.anucene.2009.10.011
7.
Jeon
,
S. S.
,
Kim
,
S. J.
, and
Park
,
G. C.
,
2011
, “
Numerical Study of Condensing Bubble in Subcooled Boiling Flow Using Volume of Fluid Model
,”
Chem. Eng. Sci.
,
66
(
23
), pp.
5899
5909
.10.1016/j.ces.2011.08.011
8.
Eames
,
I.
,
2010
, “
Momentum Conservation and Condensing Vapor Bubbles
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091501
.10.1115/1.4001604
9.
Lucas
,
D.
,
Frank
,
T.
,
Lifante
,
C.
,
Zwart
,
P.
, and
Burns
,
A.
,
2011
, “
Extension of the Inhomogeneous MUSIG Model for Bubble Condensation
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4359
4367
.10.1016/j.nucengdes.2010.10.039
10.
Ganguli
,
A. A.
,
Pandit
,
A. B.
, and
Joshi
,
J. B.
,
2012
, “
Bubble Dynamics of a Single Condensing Vapor Bubble From Vertically Heated Wall in Subcooled Pool Boiling System: Experimental Measurements and CFD Simulations
,”
Int. J. Chem. Eng.
,
2012
, p.
712986
10.1155/2012/712986.
11.
Jeon
,
S. S.
,
Kim
,
S. J.
, and
Park
,
G. C.
,
2009
, “
CFD Simulation of Condensing Vapo Bubble Using VOF Model
,”
World Acad. Sci., Eng. Technol.
,
36
, pp.
209
215
.
12.
Pan
,
L. M.
,
Tan
,
Z. W.
,
Chen
,
D. Q.
, and
Xue
,
L. C.
,
2012
, “
Numerical Investigation of Vapor Bubble Condensation Characteristics of Subcooled Flow Boiling in Vertical Rectangular Channel
,”
Nucl. Eng. Des.
,
248
, pp.
126
136
.10.1016/j.nucengdes.2012.04.001
13.
Pu
,
L.
,
Li
,
H.
,
Zhao
,
J.
, and
Chen
,
T.
,
2009
, “
Numerical Simulation of Condensation of Bubbles Under Microgravity Conditions by Moving Mesh Method in the Double-Staggered Grid
,”
Microgravity Sci. Technol.
,
21
, pp.
S15
S22
10.1007/s12217-009-9143-7.
14.
Gopala
, V
. R.
, and
van Wachem
,
B. G. M.
,
2008
, “
Volume of Fluid Methods for Immiscible-Fluid and Free-Surface Flows
,”
Chem. Eng. J.
,
141
(
1–3
), pp.
204
221
.10.1016/j.cej.2007.12.035
15.
Rabha
,
S. S.
, and
Buwa
,
V. V.
,
2010
, “
Volume-Of-Fluid (VOF) Simulations of Rise of Single/Multiple Bubbles in Sheared Liquids
,”
Chem. Eng. Sci.
,
65
(
1
), pp.
527
537
.10.1016/j.ces.2009.06.061
16.
Warrier
,
G. R.
,
Basu
,
N.
, and
Dhir
, V
. K.
,
2002
, “
Interfacial Heat Transfer During Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3947
3959
.10.1016/S0017-9310(02)00102-3
17.
Liu
,
Z.
,
Sunden
,
B.
, and
Yuan
,
J.
,
2012
, “
VOF Modeling and Analysis of Filmwise Condensation Between Vertical Parallel Plates
,”
Heat Transfer Res.
,
43
(
1
), pp.
47
68
.10.1615/HeatTransRes.2012004376
18.
Shi
,
D.
,
Bi
,
Q.
, and
Zhou
,
R.
,
2014
, “
Numerical Simulation of a Falling Ferrofluid Droplet in a Uniform Magnetic Field by the VOSET Method
,”
Numer. Heat Transfer, Part A
,
66
(
2
), pp.
144
164
.10.1080/10407782.2013.869459
You do not currently have access to this content.