Convective heat transfer from a heated flat surface due to twin oblique laminar slot-jet impingement is investigated numerically. The flow domain is confined by an adiabatic surface parallel to the heated impingement surface. The twin slot jets are located on the confining surface. The flow and geometric parameters are the jet exit Reynolds number, distance between the two jets, distance between the jet exit and the impingement surface, and the inclination angle of the jet to the impingement surface. Numerical computations are done for various combinations of these parameters, and the results are presented in terms of the streamlines and isotherms in the flow domain, the distribution of the local Nusselt number along the heated surface, and the average Nusselt number at the heated surface. It is found that the peak and the average Nusselt number on the hot surface mildly decreases and the location of the stagnation point and the peak Nusselt number gradually moves downstream as the impingement angle is decreased from 90 deg. The heat transfer distribution from the impingement surface gets more uniform as the impingement angle is reduced to 45 deg and 30 deg at lager jet-to-plate distance (4–8) with a corresponding overall heat transfer reduction of about 40% compared to the normal impinging jet case. The specified jet exit velocity profile boundary condition has considerable effect on the predicted Nusselt number around the impingement location. Fully developed jet exit velocity profile correctly predicts the Nusselt number when compared to the experimental data.

References

References
1.
Al-Aqal
,
O. M.
,
2003
, “
Heat Transfer Distributions on the Walls of a Narrow Channel With Jet Impingement and Cross Flow
,” Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA.
2.
Polat
,
S.
,
Huang
,
B.
, and
Mujumdar
,
A. S.
,
1989
, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
,
2
, pp.
157
197
.10.1615/AnnualRevHeatTransfer.v2.60
3.
Jambunathan
,
K.
,
Lai
,
E.
, and
Moss
,
M.
,
1992
, “
A Review of Heat-Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
4.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
5.
Dewan
,
A.
,
Dutta
,
R.
, and
Srinivasan
,
B.
,
2012
, “
Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
447
460
.10.1080/01457632.2012.614154
6.
Molana
,
M.
, and
Banooni
,
S.
,
2013
, “
Investigation of Heat Transfer Processes Involved Liquid Impingement Jets: A Review
,”
Braz. J. Chem. Eng.
,
30
(
3
), pp.
413
435
.10.1590/S0104-66322013000300001
7.
Gao
,
X.
, and
Sunden
,
B.
,
2003
, “
Experimental Investigation of the Heat Transfer Characteristics of Confined Impinging Slot Jets
,”
Exp. Heat Transfer
,
16
(
1
), pp.
1
18
.10.1080/08916150390126441
8.
Saad
,
N. R.
,
Polat
,
S.
, and
Douglas
,
W. J. M.
,
1992
, “
Confined Multiple Impinging Slot Jets Without Cross-Flow Effects
,”
Int. J. Heat Fluid Flow
,
13
(
1
), pp.
2
14
.10.1016/0142-727X(92)90054-D
9.
Tzeng
,
P. Y.
,
Soong
,
C. Y.
, and
Hsieh
,
C. D.
,
1999
, “
Numerical Investigation of Heat Transfer Under Confined Impinging Turbulent Slot Jets
,”
Numer. Heat Transfer, Part A
,
35
(
8
), pp.
903
924
.10.1080/104077899274976
10.
Aldabbagh
,
L. B. Y.
, and
Sezai
,
I.
,
2002
, “
Numerical Simulation of Three-Dimensional Laminar, Square Twin-Jet Impingement on a Flat Plate, Flow Structure, and Heat Transfer
,”
Numer. Heat Transfer Part A
,
41
(
8
), pp.
835
850
.10.1080/10407780290059378
11.
Abdel-Fattah
,
A.
,
2007
, “
Numerical and Experimental Study of Turbulent Impinging Twin-Jet Flow
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
1061
1072
.10.1016/j.expthermflusci.2006.11.006
12.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
The Effect of Inclination on the Heat Transfer Between a Flat Surface and an Impinging Two-Dimensional Air Jet
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
156
163
.10.1016/S0142-727X(99)00080-6
13.
Tong
,
A. Y.
,
2003
, “
On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet
,”
Int. J. Heat Mass Transfer
,
46
(
11
), pp.
2077
2085
.10.1016/S0017-9310(02)00505-7
14.
Shen
,
J.
,
Alyaser
,
M.
, and
Beitelmal
,
A. H.
,
2006
, “
Turbulent Heat Transfer Study of Inclined Impinging Jets
,”
9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
, American Institute of Aeronautics and Astronautics, San Francisco, CA, June 5–8, Vol.
3
, pp.
1837
1850
.
15.
Eren
,
H.
, and
Celik
,
N.
,
2006
, “
Cooling of a Heated Flat Plate by an Obliquely Impinging Slot Jet
,”
Int. Commun. Heat Mass Transfer
,
33
(
3
), pp.
372
380
.10.1016/j.icheatmasstransfer.2005.10.009
16.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2008
, “
Fluctuating Fluid Flow and Heat Transfer of an Obliquely Impinging Air Jet
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6169
6179
.10.1016/j.ijheatmasstransfer.2008.04.036
17.
Akansu
,
Y. E.
,
Sarioglu
,
M.
, and
Kuvvet
,
K.
,
2008
, “
Flow Field and Heat Transfer Characteristics in an Oblique Slot Jet Impinging on a Flat Plate
,”
Int. Commun. Heat Mass Transfer
,
35
(
7
), pp.
873
880
.10.1016/j.icheatmasstransfer.2008.03.005
18.
Vipat
,
O.
,
Feng
,
S. S.
, and
Kim
,
T.
,
2009
, “
Asymmetric Entrainment Effect on the Local Surface Temperature of a Flat Plate Heated by an Obliquely Impinging Two-Dimensional Jet
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5250
5257
.10.1016/j.ijheatmasstransfer.2009.04.007
19.
Ibuki
,
K.
,
Umeda
,
T.
, and
Fujimoto
,
H.
,
2009
, “
Heat Transfer Characteristics of a Planar Water Jet Impinging Normally or Obliquely on a Flat Surface at Relatively Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
33
(
8
), pp.
1226
1234
.10.1016/j.expthermflusci.2009.08.003
20.
Oztop
,
H. F.
,
Varol
,
Y.
, and
Koca
,
A.
,
2011
, “
Experimental Investigation of Cooling of Heated Circular Disc Using Inclined Circular Jet
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
990
1001
.10.1016/j.icheatmasstransfer.2011.04.013
21.
Parida
,
P. R.
,
Ekkad
,
S. V.
, and
Ngo
,
K.
,
2011
, “
Experimental and Numerical Investigation of Confined Oblique Impingement Configurations for High Heat Flux Applications
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1037
1050
.10.1016/j.ijthermalsci.2011.01.010
22.
Kito
,
M.
,
2012
, “
Effect of Inclination of Impinging Jets on Flow and Heat Transfer Characteristics
,”
Int. J. Science Eng. Invest.
,
1
(
9
), pp.
42
47
.
23.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2013
, “
Numerical Study of Heat Transfer From an Isothermally Heated Flat Surface Due to Turbulent Twin Oblique Confined Slot-Jet Impingement
,”
Int. J. Thermal Sci.
,
74
, pp.
1
13
.10.1016/j.ijthermalsci.2013.07.004
24.
ansys fluent Computational Fluid Dynamics Code Version 14.5, ANSYS Inc., Canonsburg, PA. http://www.ansys.com
25.
Lee
,
D. H.
,
Park
,
H. J.
, and
Ligrani
,
P.
,
2012
, “
Milliscale Confined Impinging Slot Jets: Laminar Heat Transfer Characteristics for an Isothermal Flat Plate
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2249
2260
.10.1016/j.ijheatmasstransfer.2012.01.041
26.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Tranfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1237
1248
.10.1016/S0017-9310(01)00224-1
27.
Lee
,
H. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2008
, “
A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Region for Different Channel Heights
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
4055
4068
.10.1016/j.ijheatmasstransfer.2008.01.015
You do not currently have access to this content.