Coal-direct chemical-looping combustion (CD-CLC) is a next generation combustion technology that shows great promise as a solution for the need of high-efficiency low-cost carbon capture from fossil fueled power plants. To realize this technology on an industrial scale, the development of high-fidelity simulations is a necessary step to develop a thorough understanding of the CLC process. In this paper, simulations for multiphase flow of the CD-CLC process with chemical reactions are performed using ANSYS Fluent computational fluid dynamics (CFD) software. The details of the solid–gas two-phase hydrodynamics in the CLC process are investigated using the Lagrangian particle-tracking approach called the discrete element method (DEM) for the movement and interaction of the solid oxygen carrier particles with the gaseous fuel. The initial CFD/DEM simulation shows excellent agreement with the experimental results obtained in a laboratory scale fuel reactor in cold-flow conditions at Darmstadt University of Technology. Subsequent simulations using 60% Fe2O3 supported on MgAl2O4 reacting with gaseous CH4 demonstrate successful integration of chemical reactions into the CFCD/DEM approach. This work provides a strong foundation for future simulations of CD-CLC systems using solid coal as fuel, which will be crucial for successful deployment of CD-CLC technology from the laboratory scale to pilot and industrial scale projects.

References

References
1.
Arrhenius
,
S.
,
1896
, “
On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground
,”
Philos. Mag.
,
41
, pp.
237
277
.10.1080/14786449608620846
2.
Lyngfelt
,
A.
,
Leckner
,
B.
, and
Mattisson
,
T.
,
2001
, “
A Fluidized-Bed Combustion Process With Inherent CO2 Separation; Application of Chemical-Looping Combustion
,”
Chem. Eng. Sci.
,
56
(
10
), pp.
3101
3113
.10.1016/S0009-2509(01)00007-0
3.
Ishida
,
M.
,
Zheng
,
D.
, and
Akehata
,
T.
,
1987
, “
Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis
,”
Energy
,
12
(
2
), pp.
147
154
.10.1016/0360-5442(87)90119-8
4.
Ishida
,
M.
,
Jin
,
H.
, and
Okamoto
,
T.
,
1996
, “
A Fundamental Study of a New Kind of Medium Material for Chemical-Looping Combustion
,”
Energy Fuels
,
10
(
4
), pp.
958
963
.10.1021/ef950173n
5.
Wolf
,
J.
,
Anheden
,
M.
, and
Yan
,
J.
,
2001
, “
Performance Analysis of Combined Cycles With Chemical Looping Combustion for CO2 Capture
,”
Proceedings of 18th International Pittsburgh Coal Conference
,
Pittsburgh, PA
.
6.
Marion
,
J. L.
,
2006
, “
Technology Options for Controlling CO2 Emissions From Fossil Fueled Power Plants
,”
Proceedings of 5th Annual Conference on Carbon Capture and Sequestration
,
Alexandria, VA
.
7.
Andrus
,
H. E.
,
Burns
,
G.
,
Chiu
,
J. H.
,
Liljedahl
,
G. N.
,
Stromberg
,
P. T.
, and
Thibeault
,
P. R.
,
2008
, “
Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development Phase III-Final Report
,” National Energy Technology Laboratory, Albany, OR, Report No. PPL-08-CT-25.
8.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
O’Brien
,
T.
,
2011
, “
Computational Fluid Dynamic Simulations of Chemical Looping Fuel Reactors Utilizing Gaseous Fuels
,”
Chem. Eng. Sci.
,
66
(
3
), pp.
469
479
.10.1016/j.ces.2010.11.003
9.
Leion
,
H.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2007
, “
The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion
,”
Fuel
,
86
(
12–13
), pp.
1947
1958
.10.1016/j.fuel.2006.11.037
10.
Cao
,
Y.
, and
Pan
,
W.
,
2006
, “
Investigation of Chemical Looping Combustion by Solid Fuels. 1. Process Analysis
,”
Energy Fuels
,
20
, pp.
1836
1844
.10.1021/ef050228d
11.
Mattisson
,
T.
,
Lyngfelt
,
A.
, and
Leion
,
H.
,
2009
, “
Chemical-Looping With Oxygen Uncoupling for Combustion of Solid Fuels
,”
Int. J. Greenhouse Gas Control
,
3
(
1
), pp.
11
19
.10.1016/j.ijggc.2008.06.002
12.
Leion
,
H.
,
Lyngfelt
,
A.
, and
Mattisson
,
T.
,
2009
, “
Solid Fuels in Chemical-Looping Combustion Using a NiO-Based Oxygen Carrier
,”
Chem. Eng. Res. Des.
,
87
(
11
), pp.
1543
1550
.10.1016/j.cherd.2009.04.003
13.
Rubel
,
A.
,
Zhang
,
Y.
,
Liu
,
K.
, and
Neathery
,
J.
,
2011
, “
Effect of Ash on Oxygen Carriers for the Application of Chemical Looping Combustion to a High Carbon Char
,”
Oil Gas Sci. Technol.—Rev. IFP Energies Nouv.
,
66
(
2
), pp.
291
300
.10.2516/ogst/2010024
14.
Shen
,
L.
,
Wu
,
J.
,
Gao
,
Z.
, and
Xiao
,
J.
,
2009
, “
Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10kWth Reactor
,”
Combust. Flame
156
(
7
), pp.
1377
1385
.10.1016/j.combustflame.2009.02.005
15.
Kramp
,
M.
,
Thon
,
A.
, and
Hartge
,
E.
,
2012
, “
Chemical Looping Combustion of Solid Fuels—Modeling and Validation
,”
Proceedings of 2nd International Conference on Chemical Looping
,
Darmstadt, Germany
.
16.
Thon
,
A.
,
Kramp
,
M.
, and
Hartge
,
E.
,
2012
, “
Operational Experience With a Coupled Fluidized Bed System for Chemical Looping Combustion of Solid Fuels
,”
Proceedings of 2nd International Conference on Chemical Looping
,
Darmstadt, Germany
.
17.
Alobaid
,
F.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2013
, “
Extended CFD/DEM Model for the Simulation of Circulating Fluidized Bed
,”
Adv. Powder Technol.
,
24
(
1
), pp.
403
415
.10.1016/j.apt.2012.09.003
18.
Zhang
,
Z.
,
Zhou
,
L.
, and
Agarwal
,
R.
,
2013
, “
Transient Simulations of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion
,”
Energy Fuels
,
28
(
2
), pp.
1548
1560
10.1021/ef402521x.
19.
ANSYS
,
2012
, ANSYS FLUENT User’s Guide, Canonsburg, PA.
20.
ANSYS
,
2012
, ANSYS FLUENT Theory Guide, Canonsburg, PA.
21.
Link
,
J. M.
,
1975
, “
Development and Validation of a Discrete Particle Model of a Spout-Fluid Bed Granulator
,” Ph.D. dissertation, University of Twente, Enschede, The Netherlands.
22.
Syamlal
,
M.
, and
O’Brien
,
T. J.
,
1989
, “
Computer Simulation of Bubbles in a Fluidized Bed
,”
AIChE Symp. Ser.
,
85
, pp.
22
31
.
23.
Son
,
S. R.
, and
Kim
,
S. D.
,
2006
, “
Chemical-Looping Combustion With NiO and Fe2O3 in a Thermo-Balance and Circulating Fluidized Bed Reactor With Double Loops
,”
Ind. Eng. Chem. Res.
,
45
, pp.
2689
2696
.10.1021/ie050919x
24.
Gryczka
,
O.
,
Heinrich
,
S.
,
Deen
,
N. G.
,
van Sint Annaland
,
M.
,
Kuipers
,
J. A. M.
,
Jacob
,
M.
, and
Mörl
,
L.
,
2009
, “
Characterization and CFD-Modeling of the Hydrodynamics of a Prismatic Spouted Bed Apparatus
,”
Chem. Eng. Sci.
,
64
(
14
), pp.
3352
3375
.10.1016/j.ces.2009.04.020
25.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.10.1016/0032-5910(73)80037-3
26.
Elghobashi
,
S. E.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
, pp.
309
329
.10.1007/BF00936835
27.
Elghobashi
,
S. E.
,
2006
,
An Updated Classification Map of Particle-Laden Turbulent Flows
, Proceedings of the IUTAM Symposium on Computational Multiphase Flow, Balachandar, S. and Prosperetti, A., eds.,
Springer-Verlag
,
Dordrecht, The Netherlands
.
28.
Hossain
,
M. M.
, and
de Lasa
,
H. I.
,
2008
, “
Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—A Review
,”
Chem. Eng. Sci.
,
63
, pp.
4433
4451
.10.1016/j.ces.2008.05.028
29.
Johansson
,
M.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2004
, “
Investigation of Fe2O3 With MgAl2O4 for Chemical-Looping Combustion
,”
Ind. Eng. Chem. Res.
,
43
, pp.
6978
6987
.10.1021/ie049813c
You do not currently have access to this content.