In this paper, it is estimated the heat transfer coefficient and friction factor for fully developed turbulent flow of carbon nanotube (CNT)-Fe3O4/water hybrid nanofluids flow through a tube with twisted tape inserts at constant heat flux conditions. The nanocomposite of CNT-Fe3O4 was prepared by in situ method; which contains dispersion of carboxylated-CNTs in distilled water followed by mixing of ferrous chloride and ferric chloride in the molar ratio of 2:1. Sodium hydroxide was used as reducing agent to form CNT-Fe3O4 nanocomposite. The detailed surface morphology and magnetic properties were performed by X-ray diffraction and scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The stable hybrid nanofluids were prepared by dispersing nanocomposite in distilled water, and the heat transfer and friction factor experiments were conducted for particle volume concentrations of 0.1% and 0.3%. The results indicate that a maximum of 31.10% enhancement in Nusselt number with a penalty of 1.18-times increase of pumping power was observed for particle concentration of 0.3% at a Reynolds number of 22,000 as compared to base fluid data. The Nusselt number is further enhanced to 42.51% for 0.3% nanofluid flow through a tube with twisted tape of H/D = 5 at a Reynolds number of 22,000 compared to base fluid data. The empirical correlations were proposed for the estimation of Nusselt number and friction factor to match well with the experimental data.

References

References
1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress and Exposition
,
San Francisco, CA
.
2.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
3.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
4.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
, pp.
119
123
.10.1016/j.cap.2008.12.047
5.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. Gh.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.10.1016/j.ijheatfluidflow.2006.05.001
6.
Amrollahi
,
A.
,
Rashidi
,
A. M.
,
Lotfi
,
R.
,
Meibodi
,
M. E.
, and
Kashefi
,
K.
,
2010
, “
Convection Heat Transfer of Functionalized MWNT in Aqueous Fluids in Laminar and Turbulent Flow at the Entrance Region
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
717
723
.10.1016/j.icheatmasstransfer.2010.03.003
7.
Wang
,
J.
,
Zhu
,
J.
,
Zhang
,
X.
, and
Chen
,
Y.
,
2013
, “
Heat Transfer and Pressure Drop of Nanofluids Containing Carbon Nanotubes in Laminar Flows
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
716
721
.10.1016/j.expthermflusci.2012.09.013
8.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
9.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2010
, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
334
344
.10.1016/j.ijheatmasstransfer.2009.09.024
10.
Sajadi
,
A. R.
, and
Kazemi
,
M. H.
,
2011
, “
Investigation of Turbulent Convective Heat Transfer and Pressure Drop of TiO2/Water Nanofluid in Circular Tube
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1474
1478
.10.1016/j.icheatmasstransfer.2011.07.007
11.
Ghazvini
,
M.
,
Behabadi
,
M. A. A.
,
Rasouli
,
E.
, and
Raisee
,
M.
,
2012
, “
Heat Transfer Properties of Nanodiamond-Engine Oil Nanofluid in Laminar Flow
,”
Heat Transfer Eng.
,
33
(
6
), pp.
525
532
.10.1080/01457632.2012.624858
12.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.10.1115/1.1532008
13.
Ferrouillat
,
S.
,
Bontemps
,
A.
,
Ribeiro
,
J. P.
,
Gruss
,
J. A.
, and
Soriano
,
O.
,
2011
, “
Hydraulic and Heat Transfer Study of SiO2/Water Nanofluids in Horizontal Tubes With Imposed Wall Temperature Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
424
439
.10.1016/j.ijheatfluidflow.2011.01.003
14.
Guo
,
S. Z.
,
Li
,
Y.
,
Jiang
,
J. S.
, and
Xie
,
H. Q.
,
2010
, “
Nanofluids Containing α-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements
,”
Nanoscale Res. Lett.
,
5
(
7
), pp.
1222
1227
.10.1007/s11671-010-9630-1
15.
Sundar
,
L. S.
,
Naik
,
M. T.
,
Sharma
,
K. V.
,
Singh
,
M. K.
, and
Siva Reddy
,
T. Ch.
,
2012
, “
Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube With Fe3O4 Magnetic Nanofluid
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
65
71
.10.1016/j.expthermflusci.2011.10.004
16.
Sundar
,
L. S.
,
Singh
,
M. K.
,
Bidkin
,
I.
, and
Sousa
,
A. C. M.
,
2014
, “
Experimental Investigations in Heat Transfer and Friction Factor of Magnetic Ni Nanofluid Flowing in a Tube
,”
Int. J. Heat Mass Transfer
,
70
, pp.
224
234
.10.1016/j.ijheatmasstransfer.2013.11.004
17.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
Effect of Al2O3–Cu/Water Hybrid Nanofluid in Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
38
, pp.
54
60
.10.1016/j.expthermflusci.2011.11.007
18.
Madhesh
,
D.
,
Parameshwaran
,
R.
, and
Kalaiselvam
,
S.
,
2014
, “
Experimental Investigation on Convective Heat Transfer and Rheological Characteristics of Cu–TiO2 Hybrid Nanofluids
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
104
115
.10.1016/j.expthermflusci.2013.08.026
19.
Jia
,
B. P.
,
Gao
,
L.
, and
Sun
,
J.
,
2007
, “
Self-Assembly of Magnetite Beads Along Multiwalled Carbon Nanotubes Via a Simple Hydrothermal Process
,”
Carbon
,
45
(
7
), pp.
1476
1481
.10.1016/j.carbon.2007.03.025
20.
Zhang
,
Q.
,
Zhu
,
M.
,
Zhang
,
Q.
,
Li
,
Y.
, and
Wang
,
H.
,
2009
, “
The Formation of Magnetite Nanoparticles on the Sidewalls of Multi-Walled Carbon Nanotubes
,”
Compos. Sci. Technol.
,
69
(
5
), pp.
633
638
.10.1016/j.compscitech.2008.12.011
21.
Shi
,
D.
,
Cheng
,
J. P.
,
Liu
,
F.
, and
Zhang
,
X. B.
,
2010
, “
Controlling the Size and Size Distribution of Magnetite Nanoparticles on Carbon Nanotubes
,”
J. Alloys Compounds
,
502
(
2
), pp.
365
370
.10.1016/j.jallcom.2010.04.169
22.
Sundar
,
L. S.
,
Singh
,
M. K.
,
Ramana
,
E. V.
,
Singh
,
B. K.
,
Gracio
,
J.
, and
Sousa
,
A. C. M.
,
2014
, “
Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Based Nanofluids
,”
Sci. Rep.
,
4
(
4039
), pp.
1
13
.10.1038/srep04039
23.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2014
, “
Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
73
83
.10.1016/j.icheatmasstransfer.2014.01.012
24.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Turbulent Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube With Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1409
1416
.10.1016/j.ijheatmasstransfer.2009.12.016
25.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Heat Transfer Enhancements of Low Volume Concentration Al2O3 Nanofluid and With Longitudinal Strip Inserts in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4280
4286
.10.1016/j.ijheatmasstransfer.2010.05.056
26.
Sundar
,
L. S.
,
Ravi Kumar
,
N. T.
,
Naik
,
M. T.
, and
Sharma
,
K. V.
,
2012
, “
Effect of Full Length Twisted Tape Inserts on Heat Transfer and Friction Factor Enhancement With Fe3O4 Magnetic Nanofluid Inside a Plain Tube: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
2761
2768
.10.1016/j.ijheatmasstransfer.2012.02.040
27.
Wongcharee
,
K.
, and
Eiamsa-ard
,
S.
,
2012
, “
Heat Transfer Enhancement by Using CuO/Water Nanofluid in Corrugated Tube Equipped With Twisted Tape
,”
Int. Commun. Heat Mass Transfer
,
39
(2), pp.
251
257
.10.1016/j.icheatmasstransfer.2011.11.010
28.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
A Comparison of Thermal Characteristics of Al2O3/Water and CuO/Water Nanofluids in Transition Flow Through a Straight Circular Duct Fitted With Helical Screw Tape Inserts
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
37
44
.10.1016/j.expthermflusci.2012.01.004
29.
Naik
,
M. T.
,
Janardana
,
G. R.
, and
Sundar
,
L. S.
,
2013
, “
Experimental Investigation of Heat Transfer and Friction Factor With Water-Propylene Glycol Based CuO Nanofluid in a Tube With Twisted Tape Inserts
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
13
21
.10.1016/j.icheatmasstransfer.2013.05.007
30.
Azmi
,
W. H.
,
Sharma
,
K. V.
,
Sarma
,
P. K.
,
Mamat
,
R.
, and
Anuar
,
S.
,
2014
, “
Comparison of Convective Heat Transfer Coefficient and Friction Factor of TiO2 Nanofluid Flow in a Tube With Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
81
, pp.
84
93
.10.1016/j.ijthermalsci.2014.03.002
31.
Naik
,
M. T.
,
Fahad
,
S. S.
,
Sundar
,
L. S.
, and
Singh
,
M. K.
,
2014
, “
Comparative Study on Thermal Performance of Twisted Tape and Wire Coil Inserts in Turbulent Flow Using CuO/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
65
76
.10.1016/j.expthermflusci.2014.04.006
32.
Nanocyl
,” http://www.nanocyl.com
33.
Sigma–Aldrich
,” http://www.sigma-aldrich.com
36.
Sundar
,
L. S.
,
Ramana
,
E. V.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2012
, “
Viscosity of Low Volume Concentrations of Magnetic Fe3O4 Nanoparticles Dispersed in Ethylene Glycol and Water Mixture
,”
Chem. Phys. Lett.
,
554
, pp.
236
242
.10.1016/j.cplett.2012.10.042
37.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
38.
Notter
,
R. H.
, and
Sleicher
,
C. A.
,
1972
, “
A Solution to the Graetz Problem—III. Fully Developed Region Heat Transfer Rates
,”
Chem. Eng. Sci.
,
27
(
11
), pp.
2073
2093
.10.1016/0009-2509(72)87065-9
39.
Blasius
,
H.
,
1908
, “
The Boundary Layers in Fluids With Little Friction
,”
Z. Math. Phys.
56
(
1
), pp.
1
37
.
40.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Academic
,
New York
, pp.
504
564
.10.1016/S0065-2717(08)70153-9
41.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.