The acoustic cavitation phenomenon is a source of energy for a wide range of applications such as sonoluminescence and sonochemistry. The behavior of a single bubble in liquids is an essential study for acoustic cavitation. The bubbles react with the pressure forces in liquids and reveal their full potential when periodically driven by acoustic waves. As a result of extreme compression of the bubble oscillation in an acoustic field, the bubble produces a very high pressure and temperature during collapse. The temperature may increase many thousands of Kelvin, and the pressure may approach up to hundreds of bar. Subsequently, short flashes can be emitted (sonoluminescence) and the high local temperatures and pressures induce chemical reactions under extreme conditions (sonochemistry). Different models have been presented to describe the bubble dynamics in acoustic cavitation. These studies are done through full numerical simulation of the compressible Navier–Stokes equations. This task is very complex and consumes much computation time. Several features of the cavitation fields remain unexplained. In the current model, all hydrodynamics forces acting on the bubble are considered in the typical solution. Bubble oscillation and its characteristics under the action of a sound wave are presented in order to improve and give a more comprehensive understanding of the phenomenon, which is considered to have a significant role in different areas of science and technology.

References

References
1.
Suslick
,
K. S.
,
1994
,
The Chemistry of Ultrasound
,
Encyclopaedia Britannica
,
Chicago
, pp.
138
155
.
2.
Seidi
,
S.
, and
Yamini
,
Y.
,
2012
, “
Analytical Sonochemistry; Developments, Applications, and Hyphenations of Ultrasound in Sample Preparation and Analytical Techniques
,”
Cent. Eur. J. Chem.
,
10
(
4
), pp.
938
976
.10.2478/s11532-011-0160-1
3.
Tandiono
,
S. W.
,
Ow
,
D.
,
Klaseboera
,
E.
, and
Wongb
,
V.
,
2011
, “
Sonochemistry and Sonoluminescence in Microfluidics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
15
), pp.
5996
5998
.10.1073/pnas.1019623108
4.
Rooze
,
J.
,
Rebrov
,
E.
,
Schouten
,
J.
, and
Keurentjes
,
J.
,
2013
, “
Dissolved Gas and Ultrasonic Cavitation-A Review
,”
Ultrason. Sonochem.
,
20
(
1
), pp.
1
11
.10.1016/j.ultsonch.2012.04.013
5.
Zhou
,
D. W.
,
Liu
,
D. Y.
,
Hu
,
X. G.
, and
Ma
,
C. F.
,
2002
, “
Effect of Acoustic Cavitation on Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
8
), pp.
931
938
.10.1016/S0894-1777(02)00201-7
6.
Minsier
,
V.
, and
Proost
,
J.
,
2008
, “
Shock Wave Emission Upon Spherical Bubble Collapse During Cavitation-Induced Megasonic Surface Cleaning
,”
Ultrason. Sonochem.
,
15
(
4
), pp.
598
604
.10.1016/j.ultsonch.2007.06.004
7.
Kim
,
K. Y.
, and
Kwak
,
H. Y.
,
2007
, “
Predictions of Bubble Behavior in Sulfuric Acid Solutions by a Set of Solutions of Navier–Stokes Equations
,”
Chem. Eng. Sci.
,
62
(
11
), pp.
2880
2889
.10.1016/j.ces.2007.03.001
8.
Ashokkumar
,
M.
,
2011
, “
The Characterization of Acoustic Cavitation Bubbles—An Overview
,”
Ultrason. Sonochem.
,
18
(
4
), pp.
864
872
.10.1016/j.ultsonch.2010.11.016
9.
Singla
,
R.
,
Ashokkumar
,
M.
, and
Grieser
,
F.
,
2004
, “
The Mechanism of the Sonochemical Degradation of Benzoic Acid in Aqueous Solutions
,”
Res. Chem. Intermed.
,
30
(
7–8
), pp.
723
733
.10.1163/1568567041856963
10.
Nikolopoulos
,
A. N.
,
Markopoulou
,
O. I.
, and
Papayannakos
,
N.
,
2006
, “
Ultrasound Assisted Catalytic Wet Peroxide Oxidation of Phenol: Kinetics and Intraparticle Diffusion Effects
,”
Ultrason. Sonochem.
,
13
(
1
), pp.
92
97
.10.1016/j.ultsonch.2004.10.001
11.
Naddeo
,
V.
,
Belgiorno
,
V.
, and
Napoli
,
R.
,
2007
, “
Behaviour of Natural Organic Matter During Ultrasonic Irradiation
,”
Desalination
,
210
(
1–3
), pp.
175
182
.10.1016/j.desal.2006.05.042
12.
Garbellini
,
G. S.
,
2012
, “
Ultrasound in Electrochemical Degradation of Pollutants
,”
Electrolysis
,
V.
Linkov
, ed.,
InTech
, Rijeka, Croatia, pp.
205
226
, Chap. 10.
13.
Sharma
,
S. K.
, and
Sanghi
,
R.
,
2012
,
Advances in Water Treatment and Pollution Prevention
,
Springer, Dordrecht
, p.
76
.10.1007/978-94-007-4204-8
14.
Teo
,
B. M.
,
Ashokkumar
,
M.
, and
Grieser
,
F.
,
2008
, “
Microemulsion Polymerizations via High-Frequency Ultrasound Irradiation
,”
J. Phys. Chem. B
,
112
(
17
), pp.
5265
5267
.10.1021/jp801536u
15.
Leong
,
T. S.
,
Wooster
,
T. J.
,
Kentish
,
S. E.
, and
Ashokkumar
,
M.
,
2009
, “
Minimising Oil Droplet Size Using Ultrasonic Emulsification
,”
Ultrason. Sonochem.
,
16
(
6
), pp.
721
727
.10.1016/j.ultsonch.2009.02.008
16.
Holtmannspötter
,
J.
,
Wetzel
,
M.
,
Czarnecki
,
J. V.
, and
Gudladt
,
H. J.
,
2012
, “
How Acoustic Cavitation Can Improve Adhesion
,”
Ultrasonics
,
52
(
7
), pp.
905
911
.10.1016/j.ultras.2012.02.013
17.
Leong
,
T.
,
Ashokkumar
,
M.
, and
Kentish
,
S.
,
2011
, “
The Fundamentals of Power Ultrasound—A Review
,”
Acoust. Aust.
,
39
(
2
), pp.
54
63
.
18.
Brujan
,
E. A.
,
2000
, “
Collapse of Cavitation Bubbles in Blood
,”
Europhys. Lett.
,
50
(
2
), pp.
175
181
.10.1209/epl/i2000-00251-7
19.
Zhou
,
Y.
,
Yang
,
K.
,
Cui
,
J.
,
Ye
,
J. Y.
, and
Deng
,
C. X.
,
2012
, “
Controlled Permeation of Cell Membrane by Single Bubble Acoustic Cavitation
,”
J. Controlled Release
,
157
(
1
), pp.
103
111
.10.1016/j.jconrel.2011.09.068
20.
Fan
,
Z.
,
Liu
,
H.
,
Mayer
,
M.
, and
Deng
,
C. X.
,
2012
, “
Spatiotemporally Controlled Single Cell Sonoporation
,”
Proc. Natl. Acad. Sci.
,
109
(
41
), pp.
1
6
.10.1073/pnas.1208198109
21.
Serdev
,
N. P.
,
2011
, “
Ultrasound Assisted Liposculpture—UAL: A Simplified Safe Body Sculpturing and Aesthetic Beautification Technique
,”
Advanced Techniques in Liposuction and Fat Transfer
,
N.
Serdev
, ed.,
InTech
, Rijeka, Croatia, pp.
135
150
.
22.
Pishchalnikov
,
Y. A.
,
Sapozhnikov
,
O. A.
,
Bailey
,
M. R.
,
Williams
,
J. C.
,
Cleveland
,
R. O.
,
Colonius
,
T.
,
Crum
,
L. A.
,
Evan
,
A. P.
, and
McAteer
,
J. A.
,
2003
, “
Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shock Waves
,”
J. Endourol.
,
17
(
7
), pp.
435
446
.10.1089/089277903769013568
23.
Marin
,
A.
,
Sun
,
H.
,
Husseini
,
G. A.
,
Pitt
,
W. G.
,
Christensen
,
D. A.
, and
Rapoport
,
N. Y.
,
2002
, “
Drug Delivery in Pluronic Micelles: Effect of High-Frequency Ultrasound on Drug Release From Micelles and Intracellular Uptake
,”
J. Controlled Release
,
84
(
1–2
), pp.
39
47
.10.1016/S0168-3659(02)00262-6
24.
Unger
,
E. C.
,
Porter
,
T.
,
Culp
,
W.
,
Labell
,
R.
,
Matsunaga
,
T.
, and
Zutshi
,
R.
,
2004
, “
Therapeutic Applications of Lipid-Coated Microbubbles
,”
Adv. Delivery Rev.
,
56
(
9
), pp.
1291
1314
.10.1016/j.addr.2003.12.006
25.
Rapoport
,
N.
,
2004
, “
Note Combined Cancer Therapy by Micellar-Encapsulated Drug and Ultrasound
,”
Int. J. Pharm.
,
277
(
1-2
), pp.
155
162
.10.1016/j.ijpharm.2003.09.048
26.
Coussios
,
C. C.
, and
Roy
,
R. A.
,
2008
, “
Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
395
420
.10.1146/annurev.fluid.40.111406.102116
27.
Kennedy
,
J. E.
,
2005
, “
High-Intensity Focused Ultrasound in the Treatment of Solid Tumours
,”
Nat. Rev. Cancer
,
5
(
4
), pp.
321
327
.10.1038/nrc1591
28.
Kameda
,
M.
, and
Matsumoto
,
Y.
,
1999
, “
Nonlinear Oscillation of a Spherical Gas Bubble in Acoustic Fields
,”
J. Acoust. Soc. Am.
,
106
(
6
), pp.
3156
3166
.10.1121/1.428170
29.
Kawashima
,
H.
, and
Kameda
,
M.
,
2008
, “
Dynamic of a Spherical Vapour/Gas Bubble in Varying Pressure Fields
,”
J. Fluid Sci. Technol.
,
3
(
8
), pp.
943
954
.10.1299/jfst.3.943
30.
Lauterborn
,
W.
, and
Kurz
,
T.
,
2010
, “
Physics of Bubble Oscillations
,”
Rep. Prog. Phys.
73
(
10
), p.
106501
.10.1088/0034-4885/73/10/106501
31.
Godinez
,
F.
, and
Navarrete
,
M.
,
2008
, “
Application of the Aqueous Sonoluminescence in the Photo Catalysis
,”
1st IWA Mexico National Young Water Professionals Conference
.
32.
Suslick
,
K. S.
,
Didenko
,
Y.
,
Fang
,
M.
,
Hyeon
,
T.
, and
Kolbeck
,
K.
,
1999
, “
Acoustic Cavitation and Its Chemical Consequences
,”
Philos. Trans. R. Soc., London
,
357
(1721), pp.
335
353
.10.1098/rsta.1999.0330
33.
Alhelfi
,
A.
,
2013
, “
On Bubble Dynamics in Acoustic Cavitation
,” Thesis for the degree of Licentiate of Engineering, Department of Energy Sciences, Lund University, Lund, Sweden, pp.
28
33
.
34.
Fujikawa
,
S.
, and
Akamatsu
,
T.
,
1980
, “
Effects of the Non-Equilibrium Condensation of Vapour on the Pressure Wave Produced by the Collapse of a Bubble in a Liquid
,”
J. Fluid Mech.
,
97
(
3
), pp.
481
512
.10.1017/S0022112080002662
35.
Prospertti
,
A.
, and
Hao
,
Y.
,
1999
, “
Modeling of a Spherical Gas Bubble Oscillations and Sonoluminescence
,”
Philos. Trans. R. Soc., London
,
357
(1751), pp.
203
223
.10.1098/rsta.1999.0324
36.
Brujan
,
E. A.
,
1999
, “
A First-Order Model for Bubble Dynamics in a Compressible Viscoelastic Liquid
,”
J. Non-Newtonian Fluid Mech.
,
84
(
1
), pp.
83
103
.10.1016/S0377-0257(98)00144-X
37.
Keller
,
J. B.
, and
Kolodner
,
I.
,
1956
, “
Damping of Under Water Explosion Bubble Oscillations
,”
J. Appl. Phys.
,
27
(
10
), pp.
1152
1161
.10.1063/1.1722221
38.
Alhelfi
,
A.
,
Sunden
,
B.
, and
Yuan
,
J.
,
2013
, “
Modeling of Spherical Gas Bubble Oscillation in Acoustic Pressure Field
,”
8th International Conference on Multiphase Flow
, ICMF2013-224,
Korea
, May 26–31.
39.
Mohmood
,
S.
,
Yoo
,
Y.
, and
Kwak
,
H.
,
2014
, “
Hydrodynamic Approach to Multibubble Sonoluminescence
,”
Ultrason. Sonochem.
,
21
(
4
), pp.
1512
1518
.10.1016/j.ultsonch.2014.01.022
40.
Kwak
,
H.
, and
Na
,
J.
,
1997
, “
Physical Processes for Single Bubble Sonoluminescence
,”
J. Phys. Soc. Jpn.
,
66
(
10
), pp.
3074
3083
.10.1143/JPSJ.66.3074
41.
Lim
,
C.
,
Kim
,
J. E.
,
Lee
,
J. Y.
, and
Kwak
,
H.
,
2009
, “
Nonlinear Behavior of Micro Bubbles Under Ultrasound Due to Heat Transfer
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2521
2528
.10.1007/s12206-009-0702-z
42.
Alhelfi
,
A.
, and
Sunden
,
B.
,
2014
, “
Numerical Investigation of an Oscillating Gas Bubble in an Ultrasound Field
,” HEFAT2014-1569870313, Florida, July 14–16.
43.
Kestin
,
J.
,
Knierim
,
K.
,
Masson
,
E. A.
,
Najafi
,
B.
,
Ro
,
S. T.
, and
Waldman
,
M.
,
1984
, “
Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density
,”
J. Phys. Chem. Ref. Data
,
13
(
1
), pp.
229
303
.10.1063/1.555703
44.
Kreyszig
,
E.
,
2011
,
Advanced Engineering Mathematics
,
10th ed.
,
John Wiley & Sons
, New York.
45.
Löfstedt
,
R.
,
Barber
,
B. P.
, and
Putterman
,
S. J.
,
1993
, “
Toward a Hydrodynamic Theory of Sonoluminescence
,”
Phys. Fluids
,
5
(
11
), pp.
2911
2928
.10.1063/1.858700
46.
Flannigan
,
D.
,
Hopkins
,
S.
,
Camara
,
C.
,
Putterman
,
S.
, and
Suslick
,
K.
,
2006
, “
Measurement of Pressure and Density Inside a Single Sonoluminescing Bubble
,”
Phys. Rev. Lett.
,
96
(
20
), p.
204301
.10.1103/PhysRevLett.96.204301
47.
Flannigan
,
D.
, and
Suslick
,
K.
,
2005
, “
Plasma Formation and Temperature Measurement During Single-Bubble Cavitation
,”
Lett. Nat.
,
434
(7029), pp.
52
55
.10.1038/nature03361
You do not currently have access to this content.