In this paper, we have designed and constructed a low cost solar-thermoelectric (TE) air-conditioning system for people in remote areas where electricity is still in short supply. Such system can be potentially used to condition tents and living areas. The proposed solar-powered TE air-conditioning system is based on the principles of Peltier effect to create a finite temperature difference across the condenser and the evaporator of the TE air-conditioning system. The cold side (or the evaporator) of the TE module is used for air-conditioning application; provides cooling to the living space. The thermal energy from the hot side of the module is dumped to the surrounding environment. Using the existing heat transfer and thermodynamics knowledge, an analytical model is developed to predict the performance of the solar-TE air-conditioning system in terms of the hot and cold reservoir temperatures, heat removal rates from the conditioned space, power input, and coefficient of performance (COP). A second analytical model is proposed to predict the cooling down period of the conditioned space as a function of heat removed by air-conditioning system, heat gained through the wall of the conditioned space, and heat generated inside the conditioned space. A detailed system is constructed to predict the performance of solar-TE air-conditioning system experimentally. A conditioned space was constructed to carry out the experimental work. Multiple air-conditioning systems were installed in the conditioned space. The cooling performance of the designed solar-TE air-conditioning system was experimentally tested and verified with the analytical calculation.

References

References
1.
D&R International Ltd.
,
2012
,
2011 Building Energy Data Book
,
U.S. Department of Energy
, Available at http://buildingsdatabook.eren.doe.gov/docs%5CDataBooks%5C2011_BEDB.pdf
2.
Chakravarthy
,
V. S.
,
Shah
,
R. K.
, and
Venkatarathnam
,
G.
,
2011
, “
A Review of Refrigeration Methods in the Temperature Range 4–300 K
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(2), p.
0208011
.10.1115/1.4003701
3.
Russel
,
M. K.
,
Ewing
,
D.
, and
Ching
,
C. Y.
,
2013
, “
Characterization of a Thermoelectric Cooler Based Thermal Management System Under Different Operating Conditions
,”
Appl. Therm. Eng.
,
50
(1), pp.
652
659
.10.1016/j.applthermaleng.2012.05.002
4.
He
,
W.
,
Zhou
,
J.
,
Hou
,
J.
,
Chen
,
C.
, and
Ji
,
J.
,
2013
, “
Theoretical and Experimental Investigation on a Thermoelectric Cooling and Heating System Driven by Solar
,”
Appl. Energy
,
107
, pp.
89
97
.10.1016/j.apenergy.2013.01.055
5.
Khattab
,
N. M.
, and
El Shenawy
,
E. T.
,
2006
, “
Optimal Operation of Thermoelectric Cooler Driven by Solar Thermoelectric Generator
,”
Energy Convers. Manage.
,
47
(4), pp.
407
426
.10.1016/j.enconman.2005.04.011
6.
Wahab
,
S.
,
Elkamel
,
A.
,
Al-Damkhi
,
A. M.
,
Al-Habsi
,
I. A.
,
Al-Rubai'ey
,
H. S.
,
Al-Battashi
,
A. K.
,
Al-Tamimi
,
A. R.
,
Al-Mamari
,
K. H.
, and
Chutani
,
M. U.
,
2009
, “
Design and Experimental Investigation of Portable Solar Thermoelectric Refrigerator
,”
Renewable Energy
,
34
(1), pp.
30
34
.10.1016/j.renene.2008.04.026
7.
Shen
,
L.
,
Xiao
,
F.
,
Chen
,
H.
, and
Wang
,
S.
,
2013
, “
Investigation of a Novel Thermoelectric Radiant Air-Conditioning System
,”
Energy Build.
,
59
, pp.
123
132
.10.1016/j.enbuild.2012.12.041
8.
Cherkez
,
R.
,
2012
, “
Theoretical Studies on the Efficiency of Air Conditioner Based on Permeable Thermoelectric Converter
,”
Appl. Therm. Eng.
,
38
, pp.
7
13
.10.1016/j.applthermaleng.2012.01.012
9.
Mei
,
V. C.
,
Chen
,
F. C.
,
Mathiprakasam
,
B.
, and
Heenan
,
P.
,
1993
, “
Study of Solar-Assisted Thermoelectric Technology for Automobile Air Conditioning
,”
ASME J. Heat Transfer
,
115
(4), pp.
200
205
.10.1115/1.2930050
10.
Tipsaenporm
,
W.
,
Lertsatitthanakorn
,
C.
,
Bubphachot
,
B.
,
Rungsiyopas
,
M.
, and
Soponronnarit
,
S.
,
2012
, “
Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System
,”
J. Electron. Mater.
,
41
(6), pp.
1186
1192
.10.1007/s11664-012-1909-9
11.
Maneewan
,
S.
,
Tipsaenprom
,
W.
, and
Lertsatitthanakorn
,
C.
,
2010
, “
Thermal Comfort Study of a Compact Thermoelectric Air Conditioner
,”
J. Electron. Mater.
,
39
(9), pp.
1659
1664
.10.1007/s11664-010-1239-8
12.
He
,
W.
,
Zhou
,
J.
,
Chen
,
C.
, and
Ji
,
J.
,
2014
, “
Experimental Study and Performance Analysis of a Thermoelectric Cooling and Heating System Driven by a Photovoltaic/Thermal System in Summer and Winter Operation Modes
,”
Energy Convers. Manage.
,
84
, pp.
41
49
.10.1016/j.enconman.2014.04.019
13.
Melero
,
A.
,
Astrain
,
D.
,
Vian
,
J. G.
,
Aldave
,
L.
,
Albizua
,
J.
, and
Costa
,
C.
,
2003
, “
Application of Thermoelectricity and Photovoltaic Energy to Air Conditioning, Thermoelectrics
,”
22nd International Conference on—ICT
,
Spain
, Aug. 17–21, pp.
627
630
.10.1109/ICT.2003.1287591
14.
Astrain
,
D.
,
Martínez
,
A.
, and
Rodríguez
,
A.
,
2012
, “
Improvement of a Thermoelectric and Vapor Compression Hybrid Refrigerator
,”
Appl. Therm. Eng.
,
39
, pp.
140
150
.10.1016/j.applthermaleng.2012.01.054
15.
Lertsatitthanakorn
,
C.
,
Hirunlabh
,
J.
,
Khedari
,
J.
, and
Daguenet
,
M.
,
2002
, “
Experimental Performance of a Ceiling-Type Free Convicted Thermoelectric Air Conditioner
,”
Int. J. Ambient Energy
,
23
(2), pp.
173
177
.10.1080/01430750.2002.9674872
16.
Luo
,
J.
,
Chen
,
L.
,
Sun
,
F.
, and
Wu
,
C.
,
2003
, “
Optimum Allocation of Heat Transfer Surface Area for Cooling Load and COP Optimization of a Thermoelectric Refrigerator
,”
Energy Convers. Manage.
,
44
(20), pp.
3197
3206
.10.1016/S0196-8904(03)00107-9
17.
Chen
,
K.
, and
Suphasith
,
S.
,
1996
, “
Latent Heat Effects in Thermoelectric Air Conditioners and Heat Pumps Equipped With a Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
118
(3), pp.
221
228
.10.1115/1.2793866
18.
Riffat
,
S. B.
, and
Qiu
,
G. Q.
,
2006
, “
Design and Characterization of a Cylindrical, Water-Cooled Heat Sink for Thermoelectric Air-Conditioners
,”
Int. J. Energy Res.
,
30
(2), pp.
67
80
.10.1002/er.1124
19.
Zhao
,
D.
, and
Tan
,
G.
,
2014
, “
A Review of Thermoelectric Cooling: Materials, Modeling and Applications
,”
Appl. Therm. Eng.
,
66
(1–2), pp.
15
24
.10.1016/j.applthermaleng.2014.01.074
20.
Sinha
,
A.
, and
Joshi
,
Y.
,
2010
, “
Application of Thermoelectric Adsorption Cooler for Harsh Environment Electronics Under Varying Heat Load
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(2), p.
021004
.10.1115/1.4002590
21.
Kazmierczak
,
M. J.
,
Krishnamoorthy
,
S.
, and
Gupta
,
A.
,
2009
, “
Experimental Testing of a Thermoelectric-Based Hydronic Cooling and Heating Device With Transient Charging of Sensible Thermal Energy Storage Water Tank
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(4), p.
0410051
.10.1115/IMECE2008-69235
22.
Riffat
,
S. B.
, and
Qiu
,
G.
,
2004
, “
Comparative Investigation of Thermoelectric Air-Conditioners Versus Vapor Compression and Adsorption Air-Conditioners
,”
Appl. Therm. Eng.
,
24
(14–15), pp.
1979
1993
.10.1016/j.applthermaleng.2004.02.010
23.
Onyegegbu
,
S. O.
,
1982
, “
Performance of a Modulated Solar Thermoelectric Cooler
,”
Energy Convers. Manage.
,
22
(1), pp.
39
46
.10.1016/0196-8904(82)90007-3
24.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill
,
Toronto
.
25.
Angrist
,
S. W.
,
1982
,
Direct Energy Conversion
,
Allyn and Bacon Inc.
,
Boston
.
26.
Chen
,
L.
,
Li
,
J.
,
Sun
,
F.
, and
Wu
,
C.
,
2005
, “
Effect of Heat Transfer on the Performance of Two-Stage Semiconductor Thermoelectric Refrigerators
,”
J. Appl. Phys.
,
98
(3), p.
0345071
.10.1063/1.2001156
27.
Faraji
,
A. Y.
,
Goldsmid
,
H. J.
, and
Akbarzadeh
,
A.
,
2014
, “
Experimental Study of a Thermoelectrically-Driven Liquid Chiller in Terms of COP and Cooling Down Period
,”
Energy Convers. Manage.
,
77
(1), pp.
340
348
.10.1016/j.enconman.2013.09.047
You do not currently have access to this content.