Fluid catalytic cracking (FCC) is one of the most important conversion processes in petroleum refineries, and the FCC regenerator is a key part of an FCC unit utilized in the recovery of solid catalyst reactivity by burning off the deposited coke on the catalyst surface. A three-dimensional multiphase, multispecies reacting flow computational fluid dynamics (CFD) model was established to simulate the flow and reactions inside an FCC regenerator. The Euler–Euler approach, where the two phases (gas and solid) are considered to be continuous and fully interpenetrating, is employed. The model includes gas–solid momentum exchange, gas–solid heat exchange, gas–solid mass exchange, and chemical reactions. Chemical reactions incorporated into the model simulate the combustion of coke which is present on the catalyst surface. The simulation results were validated by plant data.

References

References
1.
Mathiesen
,
V.
,
Solberg
,
T.
, and
Hjertager
,
B. H.
,
2000
, “
An Experimental and Computational Study of Multiphase Flow Behavior in a Circulating Fluidized Bed
,”
Int. J. Multiphase Flow
,
26
(
3
), pp.
387
419
.10.1016/S0301-9322(99)00027-0
2.
Hernandez-Jimenez
,
F.
,
Third
,
J. R.
,
Scosta-Iborra
,
A.
, and
Muller
,
C. R.
,
2011
, “
Comparison of Bubble Eruption Models With Two-Fluid Simulations in a 2D Gas–Fluidized Bed
,”
Chem. Eng. J.
,
117
(
1
), pp.
328
339
.10.1016/j.cej.2011.04.013
3.
Gao
,
J.
,
Lan
,
X.
,
Fan
,
Y.
,
Chang
,
J.
,
Wang
,
G.
,
Lu
,
C.
, and
Xu
,
C.
,
2009
, “
CFD Modeling and Validation of the Turbulent Fluidized Bed of FCC Particles
,”
Particle Technol. Fluidization
,
55
(
7
), pp.
1680
1694
.10.1002/aic.11824
4.
Huilin
,
L.
, and
Gidaspow
,
D.
,
2003
, “
Hydrodynamics of Binary Fluidization in a Riser: CFD Simulation Using Granular Temperatures
,”
Chem. Eng. Sci.
,
58
(
16
), pp.
3777
3792
.10.1016/S0009-2509(03)00238-0
5.
Wang
,
S.
,
Lu
,
H.
,
Li
,
X.
,
Yu
,
L.
,
Ding
,
J.
, and
Zhao
,
Y.
,
2008
, “
CFD Simulations of Bubbling Beds of Rough Spheres
,”
Chem. Eng. Sci.
,
58
(
23
), pp.
5653
5662
.10.1016/j.ces.2008.08.010
6.
Chiesa
,
M.
,
Mathiesen
,
V.
,
Melheim
,
J. A.
, and
Halvorsen
,
B.
,
2005
, “
Numerical Simulation of Particulate Flow by the Eulerian–Lagrangian and the Eulerian–Eulerian Approach With Opplication to a Fluidized Bed
,”
Comput. Chem. Eng.
,
29
(
2
), pp.
291
304
.10.1016/j.compchemeng.2004.09.002
7.
Chen
,
Y.-M.
,
2006
, “
Recent Advances in FCC Technology
,”
Powder Technol.
,
163
(1–2), pp.
2
8
.10.1016/j.powtec.2006.01.001
8.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(5), pp.
285
292
.10.1016/0032-5910(73)80037-3
9.
Goldschmidt
,
M. J. V.
,
Kuipers
,
J. A. M.
, and
van Swaaij
,
W. P. M.
,
2001
, “
Hydrodynamic Modeling of Dense Gas–Fluidized Beds Using the Kinetic Theory of Granular Flow: Effect of Coefficient of Restitution on Bed Dynamics
,”
Chem. Eng. Sci.
,
56
(
2
), pp.
571
578
.10.1016/S0009-2509(00)00262-1
10.
Goldschmidt
,
M. J. V.
,
Kuipers
,
J. A. M.
, and
Beetstra
,
R.
,
2004
, “
Hydrodynamic Modeling of Dense Gas–Fluidized Beds: Comparison and Validation of 3D Discrete Particle and Continuum Models
,”
Powder Technol.
,
142
(
1
), pp.
23
47
.10.1016/j.powtec.2004.02.020
11.
Hoomans
,
B. P.
,
Kuipers
,
J. A. M.
,
Briels
,
W. J.
, and
van Swaaij
,
W. P. M.
,
1996
, “
Discrete Particle Simulation of Bubble and Slug Formation in a Two-Dimensional Gas–Fluidized Bed
,”
Chem. Eng. Sci.
,
51
(
1
), pp.
99
108
.10.1016/0009-2509(95)00271-5
12.
Xu
,
B. H.
, and
Yu
,
A. B.
,
1997
, “
Numerical Simulation of the Gas–Solid Flow in a Fluidized Bed by Combining Discrete Particle Method With Computational Fluid Dynamics
,”
Chem. Eng. Sci.
,
52
(
16
), pp.
2785
2908
.10.1016/S0009-2509(97)00081-X
13.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
,
1933
, “
Discrete Particle Simulation of Two-Dimensional Fluidized Bed
,”
Powder Technol.
,
77
(
1
), pp.
79
87
.10.1016/0032-5910(93)85010-7
14.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
,
1992
, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
,
71
(
3
), pp.
239
250
.10.1016/0032-5910(92)88030-L
15.
Hoomans
,
B. P. B.
,
Kuipers
,
J. A. M.
,
Briels
,
W. J.
, and
Van Swaaij
,
W. P. M.
,
1996
, “
Discrete Particle Simulation of Bubble and Slug Formation in a Two-Dimensional Gas–Fluidised Bed: A Hard-Sphere Approach
,”
Chem. Eng. Sci.
,
51
(
1
), pp.
99
118
.10.1016/0009-2509(95)00271-5
16.
Xu
,
B. H.
, and
Yu
,
A. B.
,
1997
, “
Numerical Simulation of the Gas–Solid Flow in a Fluidized Bed by Combining Discrete Particle Method With Computational Fluid Dynamics
,”
Chem. Eng. Sci.
,
52
(
16
), pp.
2785
2809
.10.1016/S0009-2509(97)00081-X
17.
Gao
,
J.
,
Lan
,
X.
,
Fan
,
Y.
,
Chang
,
J.
,
Wang
,
G.
,
Lu
,
C.
, and
Xu
,
C.
,
2009
, “
Hydrodynamics of Gas–Solid Fluidized Bed of Disparately Sized Binary Particles
,”
Chem. Eng. Sci.
,
64
(
20
), pp.
4302
4316
.10.1016/j.ces.2009.07.003
18.
Hosseini
,
S. H.
,
Rahimi
,
R.
,
Zivdar
,
M.
, and
Samimi
,
A.
,
2009
, “
CFD Simulation of Gas–Solid Bubbling Fluidized Bed Containing FCC Particles
,”
Korean J. Chem. Eng.
,
26
(
5
), pp.
1405
1413
.10.1007/s11814-009-0220-9
19.
Hosseini
,
S. H.
,
Ahmadi
,
G.
,
Rahimi
,
R.
,
Zivdar
,
M.
, and
Esfahany
,
M. N.
,
2010
, “
CFD Studies of Solids Hold-Up Distribution and Circulation Patterns in Gas–Solid Fluidized Beds
,”
Powder Technol.
,
200
(
3
), pp.
202
215
.10.1016/j.powtec.2010.02.024
20.
Benyahia
,
S.
,
Arastoopour
,
H.
,
Knowlton
,
T. M.
, and
Massah
,
H.
,
2000
, “
Simulation of Particles and Gas Flow Behavior in the Riser Section of a Circulating Fluidized Bed Using the Kinetic Theory Approach for the Particulate Phase
,”
Powder Technol.
,
112
(
1–2
), pp.
24
33
.10.1016/S0032-5910(99)00302-2
21.
Li
,
P.
,
Lan
,
X.
,
Xu
,
C.
,
Wang
,
G.
,
Lu
,
C.
, and
Gao
,
J.
,
2009
, “
Drag Models for Simulating Gas–Solid Flow in the Turbulent Fluidization
,”
Particuology
,
7
(
4
), pp.
269
277
.10.1016/j.partic.2009.03.010
22.
Bai
,
D.
,
Zhu
,
J.-X.
,
Jin
,
Y.
, and
Yu
,
Z.
,
1988
, “
Simulation of FCC Catalyst Regeneration in a Riser Regenerator
,”
Chem. Eng. J.
,
71
(
2
), pp.
97
109
.10.1016/S1385-8947(98)00110-7
23.
Dimitriadis
,
V. D.
,
Lappas
,
A. A.
, and
Vasalos
,
L. A.
,
1998
, “
Kinetics of Combustion of Carbon in Carbonaceous Deposits on Zeolite Catalysts for Fluid Catalytic Cracking Units (FCCU). Comparison Between Pt and Non Pt-Containing Catalysts
,”
Fuel
,
77
(
12
), pp.
1377
1383
.10.1016/S0016-2361(98)00033-7
24.
Faltsi-Saravelou
,
O.
,
Vasalos
,
A.
, and
Dimogiorgas
,
G.
,
1991
, “
FbSim: A Model for Fluidized Bed Simulation II. Simulation of an Industrial Fluidized Catalytic Cracking Regenerator
,”
Comput. Chem. Eng.
,
15
(
9
), pp.
647
656
.10.1016/0098-1354(91)87026-6
25.
Sotirchos
,
A. V.
,
Mon
,
E.
, and
Amundson
,
N. R.
,
1983
, “
Combustion of Coke Deposits in a Catalyst Pellet
,”
Chem. Eng. Sci.
,
38
(
1
), pp.
55
68
.10.1016/0009-2509(83)80134-1
26.
Lee
,
L.-S.
,
Yu
,
S.-W.
, and
Cheng
,
C.-T.
,
1989
, “
Fluidized-Bed Catalyst Cracking Regenerator Modeling and Analysis
,”
Chem. Eng. J.
,
40
(
2
), pp.
71
82
.10.1016/0300-9467(89)80048-6
27.
Cao
,
B.
,
Zhang
,
P.
,
Zheng
,
X.
,
Xu
,
C.
, and
Gao
,
J.
,
2008
, “
Numerical Simulation of Hydrodynamics and Coke Combustions in FCC Regenerator
,”
Pet. Sci. Technol.
,
26
(
3
), pp.
256
269
.10.1080/10916460500527104
28.
Sapre
,
A. V.
,
Leib
,
T. M.
, and
Anderson
,
D. H.
,
1990
, “
FCC Regenerator Flow Model
,”
Chem. Eng. Sci.
,
45
(
8
), pp.
2203
2209
.10.1016/0009-2509(90)80096-W
29.
Almuttahar
,
A.
, and
Taghipour
,
F.
,
2008
, “
Computational Fluid Dynamics of High Density Circulating Fluidized Bed Riser: Study of Modeling Parameters
,”
Powder Technol.
,
185
(
1
), pp.
11
23
.10.1016/j.powtec.2007.09.010
30.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidized Bed
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.10.1016/0017-9310(78)90080-7
31.
Tsuo
,
Y. P.
, and
Gidaspow
,
D.
,
2004
, “
Computation of Flow Patterns in Circulating Fluidized Beds
,”
AIChE J.
,
36
(
6
), pp.
885
896
.10.1002/aic.690360610
32.
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
1989
, “
Computer Simulation of Bubbles in a Fluidized Bed
,”
AIChE Symp. Ser.
,
85
(
1
), pp.
22
31
.
33.
fluent 13.0, User's Guide, FLUENT, Inc.
34.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics, the Finite Volume Method
, John Wiley & Sons, New York.
35.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog. Symp. Ser.
,
62
, pp.
100
111
.
36.
McKeen
,
T.
, and
Pugsley
,
T.
,
2003
, “
Simulation and Experiment Validation of a Freely Bubbling Bed of FCC Catalyst
,”
Powder Technol.
,
129
(
1–3
), pp.
139
152
.10.1016/S0032-5910(02)00294-2
37.
Lettieri
,
P.
,
Newtone
,
D.
, and
Yates
,
J. G.
,
2002
, “
Homogeneous Bed Expansion of FCC Catalysts, Influence of Temperature on the Parameters of the Richardson–Zaki Equation
,”
Powder Technol.
,
123
(
2-3
), pp.
221
231
.10.1016/S0032-5910(01)00463-6
38.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
6
), pp.
89
94
.
39.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
A Drag Coefficient Correlation
,”
VDI Zeits
,
77
, pp.
318
320
.
40.
de Souza Braun
,
M. P.
,
Mineto
,
A. T.
,
Navarro
,
H. A.
,
Cabezas-Gomez
,
L.
, and
da Silva
,
R. C.
,
2010
, “
The Effect of Numerical Diffusion and the Influence of Computational Grid Over Gas–Solid Two-Phase Flow in a Bubbling Fluidized Bed
,”
Math. Comput. Modell.
,
52
(
9–10
), pp.
1390
1942
.10.1016/j.mcm.2010.05.017
41.
Kanervo
,
J. M.
,
Krause
,
A. O.
,
Aittama
,
J. R.
,
Hagelberg
,
P. H.
,
Lipiainen
,
K. J. T.
,
Eilos
,
I. H.
,
Hiltunen
,
J. S.
, and
Niemei
,
V. M.
,
2001
, “
Kinetics of Regeneration of a Cracking Catalyst Derived From TPO Measurements
,”
Chem. Eng. Sci.
,
56
(
4
), pp.
1221
1227
.10.1016/S0009-2509(00)00343-2
42.
Wang
,
G.-X.
,
Lin
,
S.-X.
,
Mo
,
W.-J.
,
Peng
,
C.-L.
, and
Yang
,
G.-H.
,
1986
, “
Kinetics of Combustion of Carbon and Hydrogen in Carbonaceous Deposits on Zeolite-Type Cracking Catalyst
,”
Ind. Eng. Chem. Process Des. Dev.
,
25
(
3
), pp.
626
630
.10.1021/i200034a005
43.
Dryer
,
F. L.
, and
Glassman
,
I.
,
1973
, “
High-Temperature Oxidation of CO and CH4
,”
14th Symposium International on Combustion
, Combustion Institute, p.
987
.
You do not currently have access to this content.