A numerical study has been carried out on the metalorganic chemical vapor deposition (MOCVD) process for the fabrication of gallium nitride (GaN) thin films, which range from a few nanometers to micrometers in thickness. The numerical study is also coupled with an experimental study on the flow and thermal transport processes in the system. Of particular interest in this study is the dependence of the growth rate of GaN and of the uniformity of the film on the flow, resulting from the choice of various design and operating parameters involved in the MOCVD process. Based on an impingement type rotating-disk reactor, three-dimensional simulations have been preformed to indicate the deposition rate increases with reactor pressure, inlet velocity, and wafer rotating speed, while decreases with the precursor concentration ratio. Additionally, a better film uniformity is caused by reducing the reactor pressure, inlet velocity and wafer rotating speed, and increasing precursor concentration ratio. With the impact of wafer temperature included in this study as well, these results are expected to provide a quantitative basis for the prediction, design, and optimization of the process for the fabrication of GaN devices. The flow and the associated transport processes are discussed in detail on the basis of the results obtained to suggest approaches to improve the uniformity of thin film, minimize fluid loss, and reduce flow recirculation that could affect growth rate and uniformity.

References

References
1.
Amano
,
H.
,
Kito
,
M.
,
Hiramatsu
,
K.
, and
Akasaki
,
I.
,
1989
, “
P-Type Conduction in Mg-Doped GaN Treated With Low Energy Electron Beam Irradiation (LEEBI)
,”
Jpn. J. Appl. Phys., Part 2
,
28
(
12
), pp.
L2112
L2114
.10.1143/JJAP.28.L2112
2.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Numerical Simulation of GaN Growth in a Metalorganic Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061013
.10.1115/1.4025781
3.
Evans
,
G.
, and
Greif
,
R.
,
1987
, “
Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
928
935
.10.1115/1.3248205
4.
Fotiadis
,
D. I.
,
Kremer
,
A. M.
,
McKenna
,
D. R.
, and
Jensen
,
K. F.
,
1987
, “
Complex Flow Phenomena in Vertical MOCVD Reactors: Effects on Deposition Uniformity and Interface Abruptness
,”
J. Cryst. Growth
,
85
(
1–2
), pp.
154
164
.10.1016/0022-0248(87)90217-X
5.
Karki
,
K. C.
,
Sathyamurthy
,
P. S.
, and
Patankar
,
S. V.
,
1993
, “
Laminar Flow Over a Confined Heated Disk: Effect of Buoyancy and Rotation
,”
Proceedings of the 29th National Heat Transfer Conference
, Atlanta, GA, Aug. 8–11, ASME-PUBLICATIONS-HTD, Vol.
241
, pp.
73
81
.
6.
Moffat
,
H.
, and
Jensen
,
K. F.
,
1986
, “
Complex Flow Phenomena in MOCVD Reactors: I. Horizontal Reactors
,”
J. Cryst. Growth
,
77
(
1
), pp.
108
119
.10.1016/0022-0248(86)90290-3
7.
Ouazzani
,
J.
, and
Rosenberger
,
F.
,
1990
, “
Three-Dimensional Modeling of Horizontal Chemical Vapor Deposition: I. MOCVD at Atmospheric Pressure
,”
J. Cryst. Growth
,
100
(
3
), pp.
545
576
.10.1016/0022-0248(90)90256-K
8.
Mazumder
,
S.
, and
Lowry
,
S. A.
,
2001
, “
The Importance of Predicting Rate-Limited Growth for Accurate Modeling of Commercial MOCVD Reactors
,”
J. Cryst. Growth
,
224
(
1–2
), pp.
165
174
.10.1016/S0022-0248(01)00813-2
9.
Safvi
,
S. A.
,
Redwing
,
J. M.
,
Tischler
,
M. A.
, and
Kuech
,
T. F.
,
1997
, “
GaN Growth by Metalorganic Vapor Phase Epitaxy: A Comparison of Modeling and Experimental Measurements
,”
J. Electrochem. Soc.
,
144
(
5
), pp.
1789
1796
.10.1149/1.1837681
10.
Wu
,
B.
,
Ma
,
R.
, and
Zhang
,
H.
,
2003
, “
Epitaxy Growth Kinetics of GaN Films
,”
J. Cryst. Growth
,
250
(
1–2
), pp.
14
21
.10.1016/S0022-0248(02)02208-X
11.
Theodorpoulos
,
C.
,
Mountziaris
,
T. J.
,
Moffat
,
H. K.
, and
Han
,
J.
,
2000
, “
Design of Gas Inlets for the Growth of Gallium Nitride by Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
217
(
1–2
), pp.
65
81
.10.1016/S0022-0248(00)00402-4
12.
Sengupta
,
D.
,
Mazumder
,
S.
,
Kuykendall
,
W.
, and
Lowry
,
S. A.
,
2005
, “
Combined Ab Initio Quantum Chemistry and Computational Fluid Dynamics Calculations for Prediction of Gallium Nitride Growth
,”
J. Cryst. Growth
,
279
(
3–4
), pp.
369
382
.10.1016/j.jcrysgro.2005.02.036
13.
Kim
,
C. S.
,
Hong
,
J.
,
Shim
,
J.
,
Kim
,
B. J.
,
Kim
,
H. H.
,
Yoo
,
S. D.
, and
Lee
,
W. S.
,
2008
, “
Numerical and Experimental Study on Metal Organic Vapor-Phase Epitaxy of InGaN/GaN Multi-Quantum-Wells
,”
ASME J. Fluids Eng.
,
130
(
8
), p.
081601
.10.1115/1.2956513
14.
Yakovlev
,
E. V.
,
Talalaev
,
R. A.
,
Makarow
,
Y. N.
,
Yavich
,
B. S.
, and
Wang
,
W. N.
,
2004
, “
Deposition Behavior of GaN in AIX 200/4 RF-S Horizontal Reactor
,”
J. Cryst. Growth
,
261
(
2–3
), pp.
182
189
.10.1016/j.jcrysgro.2003.11.010
15.
Kadinski
,
L.
,
Merai
,
V.
,
Parekh
,
A.
,
Ramer
,
J.
,
Armour
,
E. A.
,
Stall
,
R.
,
Gurary
,
A.
,
Galyukov
,
A.
, and
Makarov
,
Y.
,
2004
, “
Computational Analysis of GaN/InGaN Deposition in MOCVD Vertical Rotating Disk Reactors
,”
J. Cryst. Growth
,
261
(
2–3
), pp.
175
181
.10.1016/j.jcrysgro.2003.11.083
16.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Thermal Transport in the Gallium Nitride Chemical Vapor Deposition Process
,”
ASME
Paper No. HT2013-17081.10.1115/HT2013-17081
You do not currently have access to this content.