A feasibility study on developing a small-scale thermoacoustic cooler based on form and size factors for a typical cell phone is presented. First, an approximate analytical model for the temperature difference was derived using the linear theory of thermoacoustics. Cooling performance could be reasonably predicted with the analytical model proposed in this study. Air and helium as the working gases and the operating frequencies of 3 kHz for air and 9.2 kHz for helium are considered within the scope of typical cell phone configurations. A stack as a core of thermoacoustic cooler is designed to accomplish the most effective performance based on normalized parameters. For the 57 mm thermoacoustic cooler operating at 3 kHz with air, the maximum temperature difference of 23.13 °C across the stack in the resonance cavity is achieved with a drive ratio of 2% with air as the medium and Mylar as a stack material. This temperature difference varies depending on the stack placement along the length of the resonance cavity, but the maximum difference was achieved when the center of stack is placed at around 7 mm away from the driver end. The drive ratio, which is proportional to the power required to produce the thermoacoustic effect, is shown to be directly related to the cooling performance achieved by thermoacoustic drivers. For example, while a drive ratio of 2% results in a temperature difference of over 20 °C at its maximum, a drive ratio of 0.2% causes a temperature difference less than 1 °C. This will be one of hardware issues to be considered in making commercially viable products. The possibility of omitting heat exchangers in the thermoacoustic cooler is investigated considering their manufacturing cost and the relatively minute improvement they bring to overall cooling for small-scale systems. The numerical result of the thermoacoustic cooling system based on design environment for low-amplitude thermoacoustic energy conversion (DeltaEC) is compared to the theoretical result. Discrepancies between the two results exist in the range of 10–15% mainly due to the limitation imposed by short stack considerations and the linear theory of thermoacoustics.

References

References
1.
Rayleigh
,
L.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
2.
Rott
,
N.
,
1969
, “
Damped and Thermally Driven Acoustic Oscillations in Wide and Narrow Tubes
,”
Z. Angew. Math. Phys.
,
20
(
2
), pp.
230
243
.10.1007/BF01595562
3.
Rott
,
N.
,
1973
, “
Thermally Driven Acoustic Oscillations. Part II: Stability Limit for Helium
,”
Z. Angew. Math. Phys.
,
24
(
1
), pp.
54
73
.10.1007/BF01593998
4.
Rott
,
N.
,
1975
, “
Thermally Driven Acoustic Oscillations. Part III: Second-Order Heat Flux
,”
Z. Angew. Math. Phys.
,
26
(
1
), pp.
43
49
.10.1007/BF01596277
5.
Rott
,
N.
,
1976
, “
Thermally Driven Acoustic Oscillations. Part IV: Tubes With Variable Cross Section
,”
Z. Angew. Math. Phys.
,
27
(
2
), pp.
197
224
.10.1007/BF01590805
6.
Rott
,
N.
,
1983
, “
Thermally Driven Acoustic Oscillations. Part VI: Excitation and Power
,”
Z. Angew. Math. Phys.
,
34
(
5
), pp.
609
626
.10.1007/BF00948805
7.
Swift
,
G. W.
,
1988
, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
, pp.
1146
1180
10.1121/1.396617.
8.
Swift
,
G. W.
,
1997
, “
Thermoacoustic Engines and Refrigerators
,”
Encycl. Appl. Phys.
,
21
, pp.
245
264
.
9.
Swift
,
G. W.
,
1992
, “
Analysis and Performance of a Large Thermoacoustic Engine
,”
J. Acoust. Soc. Am.
,
92
(
3
), pp.
1551
1563
.10.1121/1.403896
10.
Backhaus
,
S.
, and
Swift
,
G. W.
,
2000
, “
A Thermoacoustic-Stirling Heat Engine: Detailed Study
,”
J. Acoust. Soc. Am.
,
107
(6), pp.
3148
3166
.10.1121/1.429343
11.
Wheatly
,
J. C.
,
Hofler
,
T. J.
,
Swift
,
G. W.
, and
Migliori
,
A.
,
1985
, “
Understanding Some Simple Phenomena in Thermoacoustics With Applications to Acoustical Heat Engines
,”
Am. J. Phys.
,
53
(2), pp.
147
162
.10.1119/1.14100
12.
Wheatley
,
J. C.
,
Hofler
,
T.
,
Swift
,
G. W.
, and
Migliore
,
A.
,
1983
, “
An Intrinsically Irreversible Thermoacoustic Heat Engine
,”
J. Acoust. Soc. Am.
,
74
(1), pp.
153
170
.10.1121/1.389624
13.
Atchley
,
A. A.
,
Hofler
,
T. J.
,
Muzzerall
,
M. L.
, and
Kite
,
M. D.
,
1990
, “
Acoustically Generated Temperature Gradients in Short Plates
,”
J. Acoust. Soc. Am.
,
88
(
1
), pp.
251
263
.10.1121/1.399947
14.
Hofler
,
T. J.
,
1986
, “
Thermoacoustic Refrigerator Design and Performance
,” Ph.D. dissertation, University of California, San Diego, CA.
15.
Hofler
,
T. J.
, and
Reed
,
M. S.
,
1996
, “
Measurements With Wire Mesh Stacks in Thermoacoustic Prime Mover
,”
J. Acoust. Soc. Am.
,
99
(4), pp.
2559
2574
.10.1121/1.415009
16.
Garrett
,
S. L.
,
Adeff
,
J. A.
, and
Hofler
,
T. J.
,
1993
, “
Thermoacoustic Refrigeration for Space Applications
,”
J. Thermophys. Heat Transfer (AIAA)
,
7
(
4
), pp.
595
599
.10.2514/3.466
17.
Ballister
,
S. C.
, and
McKelvey
,
D. J.
,
1995
, “
Shipboard Electronics Thermoacoustic Cooler
,” M.S. thesis, Naval Postgraduate School, Monterey, CA.
18.
Mongeau
,
L.
,
Alexander
,
A.
,
Minner
,
B. L.
,
Paek
,
I.
, and
Braun
,
J. E.
,
2001
, “
Experimental Investigations of an Electro-Dynamically Driven Therrnoacoustic Cooler
,”
Proceedings of the 2001 International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
,
New York
, pp.
1
12
.
20.
Ceperley
,
P. H.
,
1979
, “
A Pistonless Stirling Engine: The Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
66
(
5
), pp.
1508
1513
.10.1121/1.383505
21.
Ceperley
,
P. H.
,
1985
, “
Gain and Efficiency of a Short Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
77
(
3
), pp.
1239
1244
.10.1121/1.392191
22.
Yazaki
,
T.
,
Iwata
,
A.
,
Maekawa
,
T.
, and
Tominaga
,
A.
,
1998
, “
Traveling Wave Thermoacoustic Engine in a Looped Tube
,”
Phys. Rev. Lett.
,
81
, pp.
3128
3131
.10.1103/PhysRevLett.81.3128
23.
Petculescu
,
G.
, and
Wilen
,
L. A.
, “
Traveling-Wave Amplification in a Variable Standing Wave Ratio Device
,”
Acoust. Res. Lett. Online
,
3
(2), pp.
71
76
.10.1121/1.1466675
24.
Wetzel
,
M.
, and
Herman
,
C.
,
2000
, “
Experimental Study of Thermoacoustic Effects on a Single Plate Part I: Temperature Fields
,”
Heat Mass Transfer
,
36
(
1
), pp.
7
20
.10.1007/s002310050358
25.
Wetzel
,
M.
, and
Herman
,
C.
,
1999
, “
Experimental Study of Thermoacoustic Effects on a Single Plate Part II: Heat Transfer
,”
Heat Mass Transfer
,
35
(
6
), pp.
433
441
.10.1007/s002310050345
26.
Ward
,
B.
,
Clark
,
J.
, and
Swift
,
G. W.
,
2008
, “
Design Environment for Low-amplitude Thermoacoustic Energy Conversion (DeltaEC),” Version 6.2
,
Los Alamos National Laboratory
,
New Mexico
.
27.
Poese
,
M. E.
, and
Garrett
,
S. L.
,
2000
, “
Performance Measurements on a Thermoacoustic Refrigerator Driven at High Amplitudes
,”
J. Acoust. Soc. Am.
,
107
(5), pp.
2480
2486
.10.1121/1.428635
28.
Olson
,
J. R.
, and
Swift
,
G. W.
,
1997
, “
Acoustic Streaming in Pulse Tube Refrigerators: Tapered Pulse Tubes
,”
Cryogenics
,
37
(
12
), pp.
769
776
.10.1016/S0011-2275(97)00037-4
29.
Tijani
,
M. E. H.
,
Zeegers
,
J. C. H.
, and
de Waele
,
A. T. A. M.
,
2002
, “
Construction and Performance of a Thermoacoustic Refrigerator
,”
Cryogenics
,
42
(
1
), pp.
59
66
.10.1016/S0011-2275(01)00180-1
30.
Tijani
,
M. E. H.
,
Zeegers
,
J. C. H.
, and
de Waele
,
A. T. A. M.
,
2002
, “
Design of Thermoacoustic Refrigerators
,”
Cryogenics
,
42
(1), pp.
49
57
.10.1016/S0011-2275(01)00179-5
31.
Tijani
,
M. E. H.
,
Zeegers
,
J. C. H.
, and
de Waele
,
A. T. A. M.
,
2002
, “
The Optimal Stack Spacing for Thermoacoustic Refrigeration
,”
J. Acoust. Soc. Am.
,
112
(
1
), pp.
128
133
.10.1121/1.1487842
32.
Wetzel
,
M.
, and
Herman
,
C.
,
1997
, “
Design Optimization of Thermoacoustic Refrigerators
,”
Int. J. Refrig.
,
20
(
1
), pp.
3
21
.10.1016/S0140-7007(96)00064-3
33.
Herman
,
C.
, and
Travnicek
,
Z.
,
2005
, “
Cool Sound: The Future of Refrigeration? Thermodynamic and Heat Transfer Issues in Thermoacoustic Refrigeration
,”
Heat Mass Transfer
,
42
(
6
), pp.
492
500
.10.1007/s00231-005-0046-x
34.
Herman
,
C.
, and
Chen
,
Y.
,
2006
, “
A Simplified Model of Heat Transfer in Heat Exchangers and Stack Plates of Thermoacoustic Refrigerators
,”
Heat Mass Transfer
,
42
(
10
), pp.
901
917
.10.1007/s00231-006-0150-6
35.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Pergamon
,
Oxford, UK
.
36.
Symko
,
O. G.
,
Abdel-Rahman
,
E.
,
Kwon
,
Y. S.
,
Emmi
,
M.
, and
Behunin
,
R.
, “
Design and Development of High-Frequency Thermoacoustic Engines for Thermal Management in Microelectronics
,”
Microelectron. J.
,
35
(
2
), pp.
185
191
.10.1016/j.mejo.2003.09.017
37.
Lottona
,
P.
,
Blanc-Benonb
,
P.
,
Bruneaua
,
M.
,
Gusevc
,
V.
,
Duffourdb
,
S.
,
Mironovd
,
M.
, and
Poignand
,
G.
,
2009
, “
Transient Temperature Profile Inside Thermoacoustic Refrigerators
,”
Int. J. Heat Mass Transfer
,
52
(21–22), pp.
4986
4996
.10.1016/j.ijheatmasstransfer.2009.03.075
38.
Russell
,
D. A.
, and
Weibull
,
P.
,
2002
, “
Tabletop Thermoacoustic Refrigerator for Demonstrations
,”
Am. J. Phys.
,
70
(12), pp.
1231
1233
.10.1119/1.1485720
You do not currently have access to this content.