The study presented in this article provides detailed description about a newly developed experimental technique to determine three key convective heat transfer parameters simultaneously in hot gas path of a modern high pressure turbine–recovery temperature (Tr), heat transfer coefficient (HTC), and adiabatic film cooling effectiveness (Eta). The proposed technique, dual linear regression technique (DLRT), has been developed based on the 1D semi-infinite transient conduction theory, is applicable toward film cooled heat transfer experiments especially under realistic engine environment conditions (high Reynolds number along with high Mach numbers). It addresses the fundamental three temperature problem by a two-test strategy. The current popular technique, curve fitting method (CFM) (Ekkad and Han, 2000, “A Transient Liquid Crystal Thermography Technique for Turbine Heat Transfer Measurements,” Meas. Sci. Technol., 11(7), pp. 957–968), which is widely used in the low speed wind tunnel experiments, is not competent in the transonic transient wind tunnel. The CFM (including schemes for both film cooled and nonfilm cooled experiments) does not provide recovery temperature on the film cooled surface. Instead, it assumes the recovery temperature equal to the mainstream total temperature. Its basic physics model simplifies the initial unsteady flow development within the data reduction period by assuming a step jump in mainstream pressure and temperature, which results in significant under prediction of HTC due to the gradual ramping of the flow Mach/Reynolds number and varying temperature in a transient, cascade wind tunnel facility. The proposed technique is advantageous due to the elimination of these added assumptions and including the effects of compressible flow physics at high speed flow. The detailed discussion on theory and development of the DLRT is followed by validation with analytical calculation and comparisons with the traditional technique by reducing the same set of experimental data. Results indicate that the proposed technique stands out with a higher accuracy and reliability.

References

References
1.
Xue
,
S.
,
Ng
,
W.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2012
, “
Fan-Shaped Hole Film Cooling on Turbine Blade in a Transonic Cascade With High Freestream Turbulence
,”
AIAA
Paper No. 2012-0368.10.2514/6.2012-0368
2.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence, and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.10.1115/1.2952381
3.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.10.1088/0957-0233/11/7/312
4.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J.
,
2004
, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.10.1016/j.ijheatmasstransfer.2004.07.029
5.
Christophel
,
J. R.
,
Couch
,
E.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Measured Adiabatic Effectiveness and Heat Transfer for Blowing From the Tip of a Turbine Blade
,”
ASME J. Turbomach.
,
127
(
2
), pp.
251
262
.10.1115/1.1811095
6.
Anto
,
K.
,
Xue
,
S.
,
Ng
,
W. F.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2013
, “
Effects of Tip Clearance Gap and Exit Mach Number on Turbine Blade Tip and Near-Tip Heat Transfer
,”
ASME
Paper No. GT2013-94345.10.1115/GT2013-94345
7.
Giel
,
P. W.
,
Thurman
,
D. R.
,
Van Fossen
,
G. J.
,
Hippensteele
,
A. A.
, and
Boyle
,
R. J.
,
1998
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
120
(
2
), pp.
305
313
.10.1115/1.2841407
8.
Kwak
,
J. S.
,
2008
, “
Comparison of Analytical and Superposition Solutions of the Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
22
(
2
), pp.
290
295
.10.2514/1.34274
9.
O'Dowd
,
D.
,
Zhang
,
Q.
,
Ligrani
,
P.
,
He
,
L.
, and
Friedrichs
,
S.
,
2009
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME
Paper No. GT2009-59376.10.1115/GT2009-59376
10.
Vedula
,
R. J.
, and
Metzger
,
D. E.
,
1991
, “
A Method for Simultaneous Determination of Local Effectiveness and Heat Transfer Distribution in Three-Temperature Convection Situations
,” International Gas Turbine and Aeroengine Congress and Exposition, 36th, Orlando, FL, June 3–6.
11.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2003
, “
A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Coefficient Distributions and Adiabatic Wall Temperature in Three-Temperature Problem
,”
ASME J. Turbomach.
,
125
(
3
), pp.
538
546
.10.1115/1.1575252
12.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
.10.1115/1.1397308
13.
Jonsson
,
M.
,
Charbonnier
,
D.
,
Ott
,
P.
, and
von Wolfersdorf
,
J.
,
2008
, “
Application of the Transient Heater Foil Technique for Heat Transfer and Film Cooling Effectiveness Measurements on a Turbine Vane Endwall
,”
ASME
Paper No. GT2008-50451.10.1115/GT2008-50451
14.
Vogel
,
G.
,
Wagner
,
G.
, and
Bolcs
,
A.
,
2002
, “
Transient Liquid Crystal Technique Combined With PSP for Improved Film Cooling Measurements
,”
10th International Symposium on Flow Visualization
, Kyoto, Japan, Aug. 26–29, No. LTT-CONF-2002-008.
15.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer
,”
ASME
Paper No. 2000-GT-202.
16.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part II: Unsteady Heat Transfer
,”
ASME
Paper No. 2000-GT-0203.10.1115/2000-GT-0203
17.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.10.1115/1.4001366
18.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.10.1115/1.2841162
19.
Kline
,
S. J.
, and
McClintok
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
20.
Panchal
,
K. V.
,
Abraham
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2012
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Part 2—Heat Transfer Performance
,”
ASME
Paper No. GT2012-68405.10.1115/GT2012-68405
21.
Moffat
,
R. J.
,
1988
, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
22.
Coleman
,
H. W.
,
Brown
,
K. H.
, and
Steele
,
W. G.
,
1995
, “
Estimating Uncertainty Intervals for Linear Regression
,”
AIAA
Paper No. 95-0796.10.2514/6.95-0796
23.
Xue
,
S.
,
2012
, “
Fan-Shaped Hole Film Cooling on Turbine Blade and Vane in a Transonic Cascade With High Freestream Turbulence
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
24.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
2004
,
Convective Heat and Mass Transfer
,
4th ed.
,
McGraw-Hill
,
Boston
.
You do not currently have access to this content.