In this study, the performance of regenerative cooling system for large expansion ratio rocket engines (Ae/At ∼ 100) is investigated numerically. During combustion and gas expansion, the walls of the combustion chamber and the rocket nozzle are exposed to high temperature gas (∼3500 K), which can ultimately lead to structural failure. Therefore, to protect the hardware from thermal failure, a regenerative cooling system for a cryogenic rocket engine that uses fuel (liquid hydrogen (LH)) or oxidizer (liquid oxygen (LOX)) as the cooling medium is considered. Three-dimensional simulations have been performed for both constant and variable fluid properties. The influence of the thermal properties of the material and thickness of the nozzle wall on conductive heat transfer has also been investigated. The effect of radiative heat transfer when there is no regenerative cooling system has been analyzed. In addition, heat transfer enhancement for different turbulence models and the influence of coolant used (both the fuel and oxidizer) is also investigated. It is evident from the results that a properly designed regenerative cooling system can maintain the hot side wall at a temperature well below the melting point of the wall material, which ensures the protection of nozzle hardware from thermal failure. Also, the predicted pressure drop is found to be 0.7 bar, which meets the design requirement. Numerical predictions are validated with the data available in literature.

References

References
1.
Manikanda Kumaran
,
R.
,
Sundararajan
,
T.
, and
Raja Manohar
,
D.
,
2010
, “
Performance Evaluation of Second Throat Diffuser for High Altitude Testing of Large Area Ratio Rocket Motors
,”
AIAA J. Propul. Power
,
26
(
2
), pp.
248
258
.10.2514/1.43298
2.
Haidn
,
O. J.
, and
Habiballah
,
M.
,
2003
, “
Research on High Pressure Cryogenic Combustion
,”
Aerosp. Sci. Technol.
,
7
(
6
), pp.
473
491
.10.1016/S1270-9638(03)00052-X
3.
Huzel
,
D. K.
, and
Huang
,
D. H.
,
1994
,
Modern Engineering for Design of Liquid-Propellant Rocket Engines
, (Progress in Astronautics and Aeronautics, Vol. 147),
AIAA
,
Washington, DC
, Chap. 4.
4.
Marchi
,
C. H.
,
Laroca
,
F.
,
Silva
,
A. F. C.
, and
Hinckel
,
J. N.
,
2004
, “
Numerical Solutions of Flows in Rocket Engine With Regenerative Cooling
,”
Numer. Heat Transfer, Part A
,
45
(
7
), pp.
699
717
.10.1080/10407780490424307
5.
Wang
,
Q.
,
Wu
,
F.
,
Zeng
,
M.
,
Luo
,
L.
, and
Sun
,
J.
,
2006
, “
Numerical Simulation and Optimization on Heat Transfer and Fluid Flow in Cooling Channel of Liquid Rocket Engine Thrust Chamber
,”
Int. J. Comput. Aided Eng. Software
,
23
(
8
), pp.
907
921
.10.1108/02644400610707793
6.
Naraghi
,
M. H.
,
Dunn
,
S.
, and
Coats
,
D.
,
2004
, “
A Model for Design and Analysis of Regeneratively Cooled Rocket Engines
,”
AIAA
Paper No. 2004-3852.10.2514/6.2004-3852
7.
Manikanda Kumaran
,
R.
,
Sreenivasan
,
R.
,
Ganesan
,
S.
, and
Sundararajan
,
T.
,
2010
, “
Simulation of Regenerative Cooling System Performance for Large Expansion Ratio Rocket Motors
,”
20th National and 9th International ISHMT ASME Heat and Mass Transfer Conference
, Mumbai, India, Jan. 4–6, pp.
1663
1670
.
8.
Locke
,
J. M.
, and
Landrum
,
D. B.
,
2008
, “
Study of Heat Transfer Correlations for Supercritical Hydrogen in Regenerative Cooling Channels
,”
J. Propul. Power
,
24
(
1
), pp.
94
103
.10.2514/1.22496
9.
Arnold
,
R.
,
Suslov
,
D.
, and
Haidn
,
O.
,
2010
, “
Film Cooling in a High-Pressure Subscale Combustion Chamber
,”
J. Propul. Power
,
26
(
3
), pp.
428
438
.10.2514/1.47148
10.
Suslov
,
D.
,
Arnold
,
R.
, and
Haidn
,
O.
,
2011
, “
Investigation of Film Cooling Efficiency in a High Pressure Subscale LOX/H2 Combustion Chamber
,”
AIAA
Paper No. 2011-5778.10.2514/6.2011-5778
11.
Matteo
,
F.
,
Venanzi
,
M.
,
Rosa
,
M.
, and
Onofri
,
M.
,
2012
, “
Modeling and Simulation of Film Cooling in Liquid Rocket Engine Propulsion Systems
,”
AIAA
Paper No. 2012-3908.10.2514/6.2012-3908
12.
Reijasse
,
P.
, and
Boccaletto
,
L.
,
2008
, “
Nozzle Flow Separation With Film Cooling
,”
AIAA
Paper No. 2008-4150.10.2514/6.2008-4150
13.
Zhang
,
H. W.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Numerical Study of Film and Regenerative Cooling in a Thrust Chamber at High Pressure
,”
Numer. Heat Transfer, Part A
,
52
(
11
), pp.
991
1007
.10.1080/10407780701364379
14.
Bai
,
M.
, and
Chung
,
J. N.
,
2012
, “
Enhanced Cooling of a Liquid-Fueled Rocket Thrust Chamber by Metal Foams
,”
J. Propul. Power
,
28
(
2
), pp.
434
443
.10.2514/1.B34422
15.
Bianchi
,
D.
, and
Nasuti
,
F.
,
2013
, “
Numerical Analysis of Nozzle Material Thermochemical Erosion in Hybrid Rocket Engines
,”
J. Propul. Power
,
29
(
3
), pp.
547
558
.10.2514/1.B34813
16.
Drexhage
,
M.
, and
Matthews
,
B.
,
1964
, “
Radiation Cooled Bipropellant Control Rocket Engines and Their Application in Space and Reentry Vehicles
,”
AIAA
Paper No. 1964-263.10.2514/6.1964-263
17.
Hammad
,
K.
, and
Naraghi
,
M.
,
1989
, “
Radiative Heat Transfer in Rocket Thrust Chambers and Nozzles
,”
AIAA
Paper No. 1989-1720.10.2514/6.1989-1720
18.
Maeding
,
C.
,
Wiedmann
,
D.
,
Quering
,
K.
, and
Knab
,
O.
,
2011
, “
Improved Heat Transfer Prediction Engineering Capabilities for Rocket Thrust Chamber Layout
,”
Prog. Propul. Phys.
,
2
, pp.
239
250
.10.1051/eucass/201102239
19.
Negishi
,
H.
,
Daimon
,
Y.
,
Kawashima
,
H.
, and
Yamanishi
,
N.
,
2009
, “
Heat Transfer Modeling for Regeneratively Cooled Thrust Chambers
,”
3rd European Conference for Aerospace Sciences
,
Versailles, France
, July 6–9.
20.
Daimon
,
Y.
,
Negishi
,
H.
,
Yamanishi
,
N.
,
Nunome
,
Y.
,
Sasaki
,
M.
, and
Tomita
,
T.
,
2011
, “
Combustion and Heat Transfer Modeling in Regeneratively Cooled Thrust Chambers (Multi-Injection Flow Features)
,”
AIAA
Paper No. 2011-5625.10.2514/6.2011-5625
21.
Negishi
,
H.
,
Daimon
,
Y.
,
Kawashima
,
H.
, and
Yamanishi
,
N.
,
2011
, “
Flowfield and Heat Transfer Characteristics of Cooling Channel Flows in a Subscale Thrust Chamber
,”
AIAA
Paper No. 2011-5844.10.2514/6.2011-5844
22.
Kim
,
S.
,
Joh
,
M.
,
Choi
,
H. S.
, and
Park
,
T. S.
,
2013
, “
Multidisciplinary Simulation of a Regeneratively Cooled Thrust Chamber of Liquid Rocket Engine: Turbulent Combustion and Nozzle Flow
,” Int. J. Heat Mass Transfer,
70
, pp. 1066–1077.
23.
Habiballah
,
M.
,
Popp
,
M.
, and
Yang
,
V.
,
1995
, “
Liquid Rocket Combustion Devices Aspects of Modeling, Analysis and Design
,”
Proceedings of the 2nd International Symposium on Liquid Rocket Propulsion
, Chatillon, France, June 19–21.
24.
Torres
,
Y.
,
Stefanini
,
L.
, and
Suslov
,
D.
,
2009
, “
Influence of Curvature in Regenerative Cooling System of Rocket Engine
,”
Prog. Propul. Phys.
,
1
, pp.
171
184
.10.1051/eucass/200901171
25.
Li
,
J. W.
,
Liu
,
Y.
, and
Qin
,
L. Z.
,
2007
, “
Numerical Simulation of Flow and Heat Transfer in Round-to-Rectangular Nozzles
,”
Numer. Heat Transfer, Part A
,
51
(3), pp.
267
291
.10.1080/10407780600710250
26.
Zhang
,
H. W.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Numerical Study of Film and Regenerative Cooling in a Thrust Chamber at High Pressure
,”
Numer. Heat Transfer, Part A
,
52
(
11
), pp.
991
1007
.10.1080/10407780701364379
27.
Manikanda Kumaran
,
R.
,
Vivekanand
,
P. K.
,
Sundararajan
,
T.
,
Kumaresan
,
K.
, and
Raja Manohar
,
D.
,
2009
, “
Optimization of Second Throat Ejectors for High Altitude Test Facility
,”
J. Propul. Power
,
25
(
3
), pp.
697
706
.10.2514/1.39219
28.
Manikanda Kumaran
,
R.
,
Sundararajan
,
T.
, and
Raja Manohar
,
D.
,
2013
, “
Simulation of High Altitude Tests for Large Area Ratio Rocket Motors
,”
AIAA J.
,
51
(
2
), pp.
433
443
.10.2514/1.J051842
You do not currently have access to this content.