In this work computational fluid dynamics (CFD) technique has been used to analyze the detailed flow structures of refrigerant R-134a in an adiabatic capillary tube using volume of fluid based finite volume method. Also, an attempt has been made to understand the flashing phenomenon within the adiabatic capillary tube. A source term has been incorporated in the governing equations to model the mass transfer rate from liquid phase to vapor phase during the flashing process. The developed numerical model has been validated with the available experimental data. The unsteady variations of flow properties such as velocity, void fraction distributions, and flow turbulence across the cross section and at different axial length of the tube have been presented. It has been observed that flashing initiates from the wall of the tube. With the inception of vapor, the flow properties change drastically with very short transient period. As far as flow turbulence is concerned, the role of flashing parameter seems to be stronger than internal tube wall roughness.

References

References
1.
Marcy
,
G. P.
,
1949
, “
Pressure Drop With Change of Phase in a Capillary Tube
,”
Refrig. Eng.
,
57
(
1
), pp.
53
57
.
2.
Kim
,
R. H.
,
1987
, “
Computer Aided Design of a Capillary Tube for the Expansion Valve of the Refrigeration Machine
,” ASHRAE Trans.,
93
(Part-2), pp.
1362
1369
.
3.
Wong
,
T. N.
, and
Ooi
,
K. T.
,
1996
, “
Evaluation of Capillary Tube Performance for CFC-12 and HFC-134a
,”
Int. Commun. Heat Mass Transfer
,
23
(
7
), pp.
993
1001
.10.1016/0735-1933(96)00081-4
4.
Bansal
,
P. K.
, and
Rupasinghe
,
A. S.
,
1998
, “
A Homogeneous Model for Adiabatic Capillary Tubes
,”
Appl. Therm. Eng.
,
18
(
3–4
), pp.
207
219
.10.1016/S1359-4311(97)00016-1
5.
Wei
,
C. S.
,
Lin
,
Y. T.
, and
Wang
,
C. C.
,
2000
, “
A Performance Comparison Between Coiled and Straight Capillary Tubes
,”
Heat Transfer Eng.
,
21
(
2
), pp.
62
66
.10.1080/014576300271031
6.
Liang
,
S. M.
, and
Wong
,
T. N.
,
2001
, “
Numerical Modeling of Two-Phase Refrigerant Flow Through Adiabatic Capillary Tubes
,”
Appl. Therm. Eng.
,
21
(
10
), pp.
1035
1048
.10.1016/S1359-4311(00)00097-1
7.
Wongwises
,
S.
, and
Pirompak
,
W.
,
2001
, “
Flow Characteristics of Pure Refrigerants and Refrigerant Mixtures in Adiabatic Capillary Tubes
,”
Appl. Therm. Eng.
,
21
(
8
), pp.
845
861
.10.1016/S1359-4311(00)00090-9
8.
Khan
,
M. K.
,
Kumar
,
R.
, and
Sahoo
,
P. K.
,
2009
, “
Flow Characteristics of Refrigerants Flowing Through Capillary Tube
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1426
1439
.10.1016/j.applthermaleng.2008.08.020
9.
Chingulpitak
,
S.
, and
Wongwises
,
S.
,
2011
, “
A Comparison of Flow Characteristics of Refrigerants Flowing Through Adiabatic Straight and Helical Capillary Tubes
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
398
404
.10.1016/j.icheatmasstransfer.2010.12.014
10.
Chen
,
S. L.
,
Cheng
,
Y. R.
,
Liu
,
C. H.
, and
Jwo
,
C. S.
,
2000
, “
Simulation of Refrigerants Flowing Through Adiabatic Capillary Tubes
,”
HVAC&R Res.
,
6
(
2
), pp.
101
115
.10.1080/10789669.2000.10391252
11.
Osher
,
S.
, and
Fedkiw
,
R. P.
,
2001
, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
,
169
(
2
), pp.
463
502
.10.1006/jcph.2000.6636
12.
Hirt
,
C. W.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
13.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y. J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
14.
Tanasawa
,
I.
,
1991
, “
Advances in Condensation Heat Transfer
,”
Advances in Heat Transfer
, Vol.
21
,
J. P.
Hartnett
, and
T. F.
Irvine
, eds.,
Academic Press
,
San Diego, CA
.
15.
Son
,
G.
, and
Dhir
,
V. K.
,
1998
, “
Numerical Simulation of Film Boiling Near Critical Pressures With a Level-Set Method
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
183
192
.10.1115/1.2830042
16.
Chen
,
W. X.
,
Chong
,
D. T.
,
Yan
,
J. J.
,
Dong
,
S. C.
, and
Liu
,
J. P.
,
2014
, “
Numerical Investigation of Two-Phase Flow in Natural Gas Ejector
,”
Heat Transfer Eng.
,
35
(
6–8
), pp.
738
745
.10.1080/01457632.2013.838069
17.
Son
,
G.
,
2001
, “
A Numerical Method for Bubble Motion With Phase Change
,”
Num. Heat Transfer B
,
39
(
5
), pp.
509
523
.10.1080/104077901750188868
18.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
19.
Tanguy
,
S.
,
Ménard
,
T.
, and
Berlemont
,
A.
,
2007
, “
A Level Set Method for Vaporizing Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
837
853
.10.1016/j.jcp.2006.07.003
20.
Liu
,
Z.
,
Sunden
,
B.
, and
Yuan
,
J.
,
2012
, “
VOF Modeling and Analysis of Filmwise Condensation Between Vertical Parallel Plates
,”
Heat Transfer Res.
,
42
(
1
), pp.
47
68
.10.1615/HeatTransRes.2012004376
21.
Fang
,
C.
,
David
,
M.
,
Rogacs
,
A.
, and
Goodson
,
K.
,
2010
, “
Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannels
,”
Frontiers Heat Mass Transfer (FHMT)
,
1
(1), p.
013002
.10.5098/hmt.v1.1.3002
22.
Bortolin
,
S.
,
Col
,
D. D.
, and
Rossetto
,
L.
,
2011
, “
Flow Boiling of R245fa in a Single Circular Microchannel
,”
Heat Transfer Eng.
,
32
(
13–14
), pp.
1160
1172
.10.1080/01457632.2011.562727
23.
Mahmoud
,
A. M. M.
,
Karayiannis
,
T. G.
, and
Kenning
,
D. B. R.
,
2014
, “
Flow Boiling Pressure Drop of R134a in Microdiameter Tubes: Experimental Results and Assessment of Correlations
,”
Heat Transfer Eng.
,
35
(
2
), pp.
178
192
.10.1080/01457632.2013.812491
24.
Kandlikar
,
S. G.
,
2010
, “
Similarities and Differences Between Flow Boiling in Microchannels and Pool Boiling
,”
Heat Transfer Eng.
,
31
(
3
), pp.
159
167
.10.1080/01457630903304335
25.
Lee
,
W. H.
,
1980
, “
A Pressure Iteration Scheme for Two Phase Flow Modeling
,”
Multiphase Transport Fundamentals, Reactor Safety, Applications
, Vol.
1
,
T. N.
Veziroglu
, ed.,
Hemisphere Publishing
,
Washington, DC
.
26.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
,
2008
, “
Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1003
1016
.10.1016/j.ijheatmasstransfer.2007.05.025
27.
Tomar
,
G.
,
Biswas
,
G.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2005
, “
Numerical Simulation of Bubble Growth in Film Boiling Using a Coupled Level-Set and Volume-of-Fluid Method
,”
Phys. Fluids
,
17
(
11
), p.
112103
.10.1063/1.2136357
28.
Prajapati
,
Y.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2014
, “
Two-Phase VOF Model for the Refrigerant Flow Through Adiabatic Capillary Tube
,”
ASHRAE Trans.
,
120
(
Part-1
), pp.
60
67
.
29.
Bunner
,
B.
, and
Tryggvason
,
G.
,
2003
, “
Effect of Bubble Deformation on the Properties of Bubbly Flows
,”
J. Fluid Mech.
,
495
, pp.
77
118
.10.1017/S0022112003006293
30.
Nierhaus
,
T.
,
Abeele
,
D. V.
, and
Deconinck
,
H.
,
2007
, “
Direct Numerical Simulation of Bubbly Flow in the Turbulent Boundary Layer of a Horizontal Parallel Plate Electrochemical Reactor
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
542
551
.10.1016/j.ijheatfluidflow.2007.03.005
31.
Lu
,
J.
, and
Tryggvason
,
G.
,
2008
, “
Effect of Bubble Deformability in Turbulent Bubbly Upflow in a Vertical Channel
,”
Phys. Fluids
,
20
(
4
), p.
040701
.10.1063/1.2911034
32.
Bolotnov
,
I. A.
,
Jansen
,
K. E.
,
Drew
,
D. A.
,
Oberai
,
A. A.
,
Lahey
,
R. T.
, Jr.
, and
Podowski
,
M. Z.
,
2011
, “
Detached Direct Numerical Simulations of Turbulent Two-Phase Bubbly Channel Flow
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
647
659
.10.1016/j.ijmultiphaseflow.2011.03.002
33.
Awad
,
M. M.
, and
Muzychka
,
Y. S.
,
2010
, “
Effective Property Models for Homogeneous Two-Phase Flows
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
106
113
.10.1016/j.expthermflusci.2008.07.006
34.
Hua
,
J.
,
Zhang
,
B.
, and
Lou
,
J.
,
2007
, “
Numerical Simulation of Microdroplet Formation in Coflowing Immiscible Liquids
,”
AIChE J.
,
53
(
10
), pp.
2534
2548
.10.1002/aic.11287
35.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
36.
NIST
,
2010
, REFPROP, Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures. Version 9.0. National Institute of Standards and Technology.
37.
Li
,
R.-Y.
,
Lin
,
S.
,
Chen
,
Z.-Y.
, and
Chen
,
Z.-H.
,
1990
, “
Mestastable Flow of R12 Through Capillary Tubes
,”
Int. J Refrig.
,
13
(
3
), pp.
181
186
.10.1016/0140-7007(90)90073-6
38.
Mikol
,
E. P.
,
1963
, “
Adiabatic Single and Two-phase Flow in Small Bore Tubes
,”
ASHRAE J.
,
5
(11), pp.
75
86
.
You do not currently have access to this content.