The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.

References

References
1.
Abu-Mulaweh
,
H. I.
,
2003
, “
Experimental Comparison Between Heat Transfer Enhancement Methods in Heat Exchangers
,”
Int. J. Mech. Eng. Educ.
,
31
(
2
), pp.
160
167
.10.7227/IJMEE.31.2.8
2.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
461
512
.10.1146/annurev.fl.15.010183.002333
3.
Abdalla
,
M. A.
,
1994
, “
A Four-Region, Moving-Boundary Model of a Once Through, Helical-Coil Steam Generator
,”
Ann. Nucl. Energy
,
21
(
9
), pp.
541
562
.10.1016/0306-4549(94)90078-7
4.
Rao
,
B. K.
,
1994
, “
Turbulent Heat Transfer to Power-Law Fluids in Helical Passages
,”
Int. J. Heat Fluid Flow
,
15
(
2
), pp.
142
148
.10.1016/0142-727X(94)90068-X
5.
Rabin
,
Y.
, and
Korin
,
E.
,
1996
, “
Thermal Analysis of a Helical Heat Exchanger for Ground Thermal Energy Storage in Arid Zones
,”
Int. J. Heat Mass Transfer
,
39
(
5
), pp.
1051
1065
.10.1016/0017-9310(95)00184-0
6.
Bai
,
B.
,
Guo
,
L.
,
Feng
,
Z.
, and
Chen
,
X.
,
1999
, “
Turbulent Heat Transfer in a Horizontally Coiled Tube
,”
Heat Transfer Asian Res.
,
28
(
5
), pp.
395
403
.10.1002/(SICI)1523-1496(1999)28:5<395::AID-HTJ5>3.0.CO;2-Y
7.
Sandeep
,
K. P.
, and
Palazoglu
,
T. K.
, “
Secondary Flow in Coiled Tubes
,” ASAE Annual International Meeting, Paper No. 996148.
8.
Genssle
,
A.
, and
Stephan
,
K.
,
2000
, “
Analysis of the Process Characteristics of an Absorption Heat Transformer With Compact Heat Exchangers and the Mixture TFE-E181
,”
Int. J. Therm. Sci.
,
39
(
1
), pp.
30
38
.10.1016/S1290-0729(00)00197-5
9.
Kern
,
D. Q.
,
2000
,
Process Heat Transfer
,
Tata McGraw-Hill
, 4th reprint, pp.
37
57
.
10.
Rennie
,
T. J.
,
2004
,
Numerical and Experimental Studies of a Double-Pipe Helical Heat Exchanger
,
Department of Bioresource Engineering, McGill University
,
Montreal, Canada
.
11.
Kumar
,
V.
,
Saini
,
S.
,
Sharma
,
M.
, and
Nigam
,
K. D. P.
,
2006
, “
Pressure Drop and Heat Transfer Study in Tube-in-Tube Helical Heat Exchanger
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4403
4416
.10.1016/j.ces.2006.01.039
12.
Chingulpitak
,
S.
, and
Wongwises
,
S.
,
2010
, “
Effects of Coil Diameter and Pitch on the Flow Characteristics of Alternative Refrigerants Flowing Through Adiabatic Helical Capillary Tubes
,”
Int. Commun. Heat Mass Transfer
,
37
(
9
), pp.
1305
1311
.10.1016/j.icheatmasstransfer.2010.07.005
13.
Chingulpitak
,
S.
, and
Wongwises
,
S.
,
2011
, “
A Comparison of Flow Characteristics of Refrigerants Flowing Through Adiabatic Straight and Helical Capillary Tubes
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
398
404
.10.1016/j.icheatmasstransfer.2010.12.014
14.
Huminic
,
G.
, and
Huminic
,
A.
,
2011
, “
Heat Transfer Characteristics in Double Tube Helical Heat Exchangers Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4280
4287
.10.1016/j.ijheatmasstransfer.2011.05.017
15.
Zhao
,
Z.
,
Wang
,
X.
,
Che
,
D.
, and
Cao
,
Z.
,
2011
, “
Numerical Studies on Flow and Heat Transfer in Membrane Helical-Coil Heat Exchanger and Membrane Serpentine-Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1189
1194
.10.1016/j.icheatmasstransfer.2011.06.014
16.
Pimenta
,
T. A.
, and
Campos
,
J. B. L. M.
,
2012
, “
Friction Losses of Newtonian and Non-Newtonian Fluids Flowing in Laminar Regime in a Helical Coil
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
194
204
.10.1016/j.expthermflusci.2011.09.013
17.
Topakoglu
,
H. C.
,
1967
, “
Steady Laminar Flows of an Incompressible Viscous Fluid in Curved Pipes
,”
J. Math. Mech.
,
16
(
12
), pp.
1321
1337
.
18.
McConalogue
,
D. J.
, and
Srivastava
,
R. S.
,
1968
, “
Motion of a Fluid in a Curved Tube
,”
Proc. R. Soc. London, Ser. A, Math. Phys. Sci.
,
307
(
1488
), pp.
37
53
.10.1098/rspa.1968.0173
19.
Hüttl
,
T. J.
, and
Friedrich
,
R.
,
2000
, “
Influence of Curvature and Torsion on Turbulent Flow in Helically Coiled Pipes
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
345
353
.10.1016/S0142-727X(00)00019-9
20.
Hüttl
,
T. J.
, and
Friedrich
,
R.
,
2001
, “
Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes
,”
Comput. Fluids
,
30
(
5
), pp.
591
605
.10.1016/S0045-7930(01)00008-1
21.
Gammack
,
D.
, and
Hydon
,
P. E.
,
2001
, “
Flow in Pipes With Non-Uniform Curvature and Torsion
,”
J. Fluid Mech.
,
433
, pp.
357
382
.10.1017/S0022112001003548
22.
Masud
,
M. A.
,
Rabiul Islam
,
Md.
,
Rasel Sheikh
,
Md.
, and
Alam
,
Md. M.
,
2010
, “
Stable Solution Zone for Fluid Flow Through Curved Pipe With Circular Cross-Section
,”
J. Naval Archit. Mar. Eng.
,
7
(
1
), pp.
19
26
.10.3329/jname.v7i1.3630
23.
Yu
,
B.
,
Zheng
,
B.
,
Lin
,
C. X.
,
Pena
,
O. J.
, and
Ebadian
,
M. A.
,
2003
, “
Laser Doppler Anemometry Measurements of Laminar Flow in Helical Pipes
,”
Exp. Therm. Fluid Sci.
,
27
(
8
), pp.
855
865
.10.1016/S0894-1777(03)00058-X
24.
Eustice
,
J.
,
1910
, “
Flow of Water in Curved Pipes
,”
Proc. R. Soc. London, Ser. A
,
84
, pp.
107
118
.10.1098/rspa.1910.0061
25.
Eustice
,
J.
,
1911
, “
Experiments of Streamline Motion in Curved Pipes
,”
Proc. R. Soc. London, Ser. A
,
85
(
576
), pp.
119
131
.10.1098/rspa.1911.0026
26.
Dean
,
W. R.
,
1928
, “
The Streamline Motion of Fluid in a Curved Pipe
,”
Philos. Mag. J. Sci., Series
,
7
(
5
), pp.
673
695
.
27.
White
,
C. M.
,
1929
, “
Streamline Flow Through Curved Pipes
,”
Proc. R. Soc. London, Ser. A
,
123
(
792
), pp.
645
663
.10.1098/rspa.1929.0089
28.
White
,
C. M.
,
1932
, “
Friction Factor and its Relation to Heat Transfer
,”
Trans. Inst. Chem. Eng.
,
18
, pp.
66
86
.
29.
Ito
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
ASME J. Basic Eng.
,
81
, pp.
123
134
.
30.
Mori
,
Y.
, and
Nakayama
,
W.
,
1965
, “
Study on Forced Convection Heat Transfer in Curved Pipes, 1st Report, Laminar Region
,”
Int. J. Heat Mass Transfer
,
8
(
1
), pp.
67
82
.10.1016/0017-9310(65)90098-0
31.
Mori
,
Y.
, and
Nakayama
,
W.
,
1967
, “
Study on Forced Convective Heat Transfer in Curved Pipes, 2nd Report, Turbulent Region
,”
Int. J. Heat Mass Transfer
,
10
(
1
), pp.
37
59
.10.1016/0017-9310(67)90182-2
32.
Mori
,
Y.
, and
Nakayama
,
W.
,
1967
, “
Study on Forced Convective Heat Transfer in Curved Pipes, 3rd Report, Theoretical Analysis Under the Condition of Uniform Wall Temperature and Practical Formula
,”
Int. J. Heat Mass Transfer
,
10
(
5
), pp.
681
695
.10.1016/0017-9310(67)90113-5
33.
Schmidt
,
E. F.
,
1967
, “
Heat Transfer and Pressure Loss in Spiral Tubes
,”
Chem. Eng. Tech.
,
39
, pp.
781
789
.
34.
Prasad
,
B.
,
Das
,
D. H.
, and
Prabhakar
,
A. K.
,
1989
, “
Pressure Drop, Heat Transfer and Performance of a Helical Coil Tubular Exchanger
,”
J. Heat Recovery Combined Heat Power
,
9
(
3
), pp.
249
256
.
35.
Ali
,
S.
,
2001
, “
Pressure Drop Correlations for Flow through Regular Helical Coil Tubes
,”
Fluid Dyn. Res.
,
28
(
4
), pp.
295
310
.10.1016/S0169-5983(00)00034-4
36.
Pimenta
,
T. A.
, and
Campos
,
J. B.
,
2012
, “
Friction Losses of Newtonian and Non-Newtonian Fluids Flowing in Laminar Regime in a Helical Coil
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
194
204
.10.1016/j.expthermflusci.2011.09.013
37.
Kirpikov
,
A. V.
,
1957
, “
Heat Transfer in Helically Coiled Pipes
,”
Trudi. Moscov. Inst. Khim. Mashinojtrojenija
,
12
, pp.
43
56
.
38.
Seban
,
R. A.
, and
McLaughlin
,
E. F.
,
1963
, “
Heat Transfer in Tube Coils With Laminar and Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
6
(
5
), pp.
387
395
.10.1016/0017-9310(63)90100-5
39.
Rogers
,
G. F.
, and
Mayhew
,
Y. R.
,
1964
, “
Heat Transfer and Pressure Loss in Helically Coiled Tubes With Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
7
(
11
), pp.
1207
1216
.10.1016/0017-9310(64)90062-6
40.
Kalb
,
C. E.
, and
Seader
,
J. D.
,
1972
, “
Heat and Mass Transfer Phenomena for Viscous Flow in Curved Circular Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
4
), pp.
801
817
.10.1016/0017-9310(72)90122-6
41.
Janssen
,
L. A.
, and
Hoogendoorn
,
C. J.
,
1978
, “
Laminar Convective Heat Transfer in Helical Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
9
), pp.
1197
1206
.10.1016/0017-9310(78)90138-2
42.
Zapryanov
,
Z.
,
Christov
,
C.
, and
Toshev
,
E.
,
1980
, “
Fully Developed Laminar Flow and Heat Transfer in Curved Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
6
), pp.
873
880
.10.1016/0017-9310(80)90042-3
43.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1997
, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristic in Helical Pipes
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
467
473
.10.1115/1.2824120
44.
Prabhanjan
,
D. G.
,
Raghavan
,
G. S.
, and
Rennie
,
T. J.
,
2002
, “
Comparison of Heat Transfer Rates Between a Straight Tube Heat Exchanger and a Helically Coiled Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
29
(
2
), pp.
185
191
.10.1016/S0735-1933(02)00309-3
45.
Rennie
,
T. J.
, and
Raghavan
,
V. G.
,
2005
, “
Experimental Studies of a Double-Pipe Helical Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
919
924
.10.1016/j.expthermflusci.2005.02.001
46.
Rennie
,
T. J.
, and
Raghavan
,
V. G.
,
2006
, “
Numerical Studies of a Double-Pipe Helical Heat Exchanger
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1266
1273
.10.1016/j.applthermaleng.2005.10.030
47.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Vijayan
,
P. K.
, and
Bhoi
,
R.
,
2008
, “
Experimental and CFD Estimation of Heat Transfer in Helically Coiled Heat Exchangers
,”
Chem. Eng. Res. Des.
,
86
(
3
), pp.
221
232
.10.1016/j.cherd.2007.10.021
48.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Iyer
,
K. N.
, and
Vijayan
,
P. K.
,
2010
, “
CFD Analysis of Single-Phase Flows Inside Helically Coiled Tubes
,”
Comput. Chem. Eng.
,
34
(
4
), pp.
430
446
.10.1016/j.compchemeng.2009.11.008
49.
Shokouhmand
,
H.
,
Salimpour
,
M. R.
, and
Akhavan-Behabadi
,
M. A.
,
2008
, “
Experimental Investigation of Shell and Coiled Tube Heat Exchangers Using Wilson Plots
,”
Int. Commun. Heat Mass Transfer
,
35
(
1
), pp.
84
92
.10.1016/j.icheatmasstransfer.2007.06.001
50.
Salimpour
,
M. R.
,
2008
, “
Heat Transfer Characteristics of a Temperature-Dependent-Property Fluid in Shell and Coiled Tube Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
35
(
9
), pp.
1190
1195
.10.1016/j.icheatmasstransfer.2008.07.002
51.
Salimpour
,
M. R.
,
2009
, “
Heat Transfer Coefficients of Shell and Coiled Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
203
207
.10.1016/j.expthermflusci.2008.07.015
52.
Purandare
,
P. S.
,
Lele
,
M. M.
, and
Gupta
,
R.
,
2012
, “
Parametric Analysis of Helical Coil Heat Exchanger
,”
ASME Int. J. Eng. Res. Technol.
,
1
(
8
), pp.
1
5
.
53.
Kupprn
,
T.
,
2000
,
Heat Exchanger Design Handbook
,
Marcel Dekker, Inc
,
New York.
54.
Remsburg
,
R.
,
2001
,
Thermal Design of Electronic Equipment, Electronics Handbook Series
,
CRC Press
Boca Raton, FL
.
55.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.10.1002/9780470172605
56.
Daily
,
J. W.
, and
Harleman
,
D. R. F.
,
1966
,
Fluid Dynamics
,
Addison Wesley, Don MiIIs
,
Ontario, Canada
.
57.
Nigam
,
K. D. P.
,
Agarwal
,
S.
, and
Srivastava
,
V. K.
,
2001
, “
Laminar Convection of Non-Newtonian Fluids in the Thermal Entrance Region of Coiled Circular Tubes
,”
Chem. Eng. J.
,
84
(
3
), pp.
223
237
.10.1016/S1385-8947(00)00376-4
58.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.