This study aims at characterizing ignition of solid targets exposed to spreading fire fronts. In order to model radiant heat fluxes on targets in a realistic way, polynomial heat fluxes are chosen. Analytical solutions for the solid surface temperature evolution regarding different time-varying heat fluxes are discussed for high thermal inertia solids using a mathematical formalism, which allows for the methodology to be extended to the case of low thermal inertia. This formulation also allows calculation of ignition times for more realistic time-dependent fluxes than previous studies on the topic, providing a more general solution to the problem of solid material ignition. Polynomial coefficients are then obtained fitting heat flux coming from absorbing–emitting flames. A characterization of solid material ignition times regarding fire front rate of spread (ROS) is finally performed, showing the need to accurately model heat flux variations in ignition time calculations.

References

References
1.
Rossi
,
J.
,
Simeoni
,
A.
,
Moretti
,
B.
, and
Leroy-Cancellieri
,
V.
,
2011
, “
An Analytical Model Based on Radiative Heating for the Determination of Safety Distances for Wildland Fires
,”
Fire Saf. J.
,
46
(
8
), pp.
520
527
.10.1016/j.firesaf.2011.07.007
2.
Fernandez-Pello
,
C.
,
1995
,
Combustion Fundamentals of Fire
,
Academic Press
, New York.
3.
Drysdale
,
D.
,
1999
,
An Introduction to Fire Dynamics
,
2nd ed.
, John Wiley and Sons, Hoboken, NJ, pp.
159
163
.
4.
Torero
,
J.
, 2008,
The SFPE Handbook of Fire Protection Engineering
,
4th ed.
,
National Fire Protection Association
, Denver, CO., pp.
2.260
2.277
.
5.
Reska
,
P.
,
Borowiec
,
P.
,
Steinhaus
,
T.
, and
Torero
,
J.
,
2012
, “
A Methodology for the Estimation of Ignition Delay Times in Forest Fire Modeling
,”
Combust. Flame
,
159
(12)
, pp.
3652
3657
.10.1016/j.combustflame.2012.08.004
6.
Porterie
,
B.
,
Consalvi
,
J.
,
Loraud
,
J.
,
Giroud
,
F.
, and
Picard
,
C.
,
2007
, “
Dynamics of Wildland Fires and Their Impact on Structures
,”
Combust. Flame
,
149
(
3
), pp.
314
328
.10.1016/j.combustflame.2006.12.017
7.
Billaud
,
Y.
,
Kaiss
,
A.
,
Consalvi
,
J.
, and
Porterie
,
B.
,
2011
, “
Monte Carlo Estimation of Thermal Radiation From Wildland Fires
,”
Int. J. Thermal Sci.
,
50
(
1
), pp.
2
11
.10.1016/j.ijthermalsci.2010.09.010
8.
Collin
,
A.
, and
Boulet
,
P.
,
2013
, “
Evaluation of Simple Models of Flame Radiation
,”
Int. J. Heat Mass Transfer
,
59
, pp.
83
92
.10.1016/j.ijheatmasstransfer.2012.09.065
9.
Agueda
,
A.
,
Pastor
,
E.
,
Perez
,
Y.
, and
Planas
,
E.
,
2010
, “
Experimental Study of the Emissivity of Flames Resulting From the Combustion of Forest Fuels
,”
Int. J. Thermal Sci.
,
49
(
3
), pp.
543
554
.10.1016/j.ijthermalsci.2009.09.006
10.
Grishin
,
A.
,
1997
,
A Mathematical Modeling of Forest Fires and New Methods of Fighting Them
,
Publishing House of the Tomsk University
,
Tomsk, Russia
.
11.
Morvan
,
D.
,
Dupuy
,
J.
,
Rigolot
,
E.
, and
Valette
,
J.
,
2006
, “
Firestar: A Physically Based Model to Study Wildfire Behaviour
,”
Forest Ecol. Manage.
,
234
, p.
S114
.10.1016/j.foreco.2006.08.155
12.
Cohen
,
J.
,
2004
, “
Relating Flame Radiation to Home Ignition Using Modeling and Experimental Crown Fires
,”
Can. J. Forest Res.
,
34
(
8
), pp.
1616
1626
.10.1139/x04-049
13.
Chetehouna
,
K.
,
Séro-Guillaume
,
O.
,
Sochet
, I
.
, and
Degiovanni
,
A.
,
2008
, “
On the Experimental Determination of Flame Front Positions and of Propagation Parameters for a Fire
,”
Int. J. Heat Mass Transfer
,
47
(
9
), pp.
1148
1157
.10.1016/j.ijthermalsci.2007.10.006
14.
Boulet
,
P.
,
Parent
,
G.
,
Acem
,
Z.
,
Kaiss
,
A.
,
Billaud
,
Y.
,
Porterie
,
B.
,
Pizzo
,
Y.
, and
Picard
,
C.
,
2001
, “
Experimental Investigation of Radiation Emitted by Optically Thin to Optically Thick Wildland Flames
,”
J. Combust.
,
2011
, p.
137437
.10.1155/2011/137437
15.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
Oxford, UK
, pp.
75
76
.
16.
Simeoni
,
A.
,
Thomas
,
J.
,
Bartoli
,
P.
,
Borowieck
,
P.
,
Reska
,
P.
,
Colella
,
F.
,
Santoni
,
P.
, and
Torero
,
J.
,
2012
, “
Flammability Studies for Wildland and Wildland-Urban Interface Fires Applied to Pine Needles and Solid Polymers
,”
Fire Saf. J.
,
54
, pp.
203
217
.10.1016/j.firesaf.2012.08.005
17.
Schemel
,
C.
,
Simeoni
,
A.
,
Biteau
,
H.
,
Rivera
,
J.
, and
Torero
,
J.
,
2008
, “
A Calorimetric Study of Wildland Fuels
,”
Exp. Thermal Fluid Sci.
,
32
(7)
, pp.
1381
1389
.10.1016/j.expthermflusci.2007.11.011
18.
Tessé
,
L.
,
Dupoirieux
,
F.
, and
Taine
,
J.
,
2004
, “
Monte-Carlo Modeling of Radiative Transfer in a Turbulent Sooty Flame
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
555
572
.10.1016/j.ijheatmasstransfer.2003.06.003
You do not currently have access to this content.