A heat transfer model that can predict the temperature distribution in moving flexible composite materials (webs) for various heating/cooling conditions is developed in this paper. Heat transfer processes are widely employed in roll-to-roll (R2R) machines that are used to perform processing operations, such as printing, coating, embossing, and lamination, on a moving flexible material. The goal is to efficiently transport the webs over heating/cooling rollers and ovens within such processes. One of the key controlled variables in R2R transport is web tension. When webs are heated or cooled during transport, the temperature distribution in the web causes changes in the mechanical and physical material properties and induces thermal strain. Tension behavior is affected by these changes and thermal strain. To determine thermal strain and material property changes, one requires the distribution of temperature in moving webs. A multilayer heat transfer model for composite webs is developed in this paper. Based on this model, temperature distribution in the moving web is obtained for the web transported on a heat transfer roller and in a web span between two adjacent rollers. Boundary conditions that reflect many types of heating/cooling of webs are considered and discussed. Thermal contact resistance between the moving web and heat transfer roller surfaces is considered in the derivation of the heat transfer model. Model simulations are conducted for a section of a production R2R coating and fusion process line, and temperature data from these simulations are compared with measured data obtained at key locations within the process line. In addition to determining thermal strain in moving webs, the model is valuable in the design of heating/cooling sources required to obtain a certain desired temperature at a specific location within the process line. Further, the model can be used in determining temperature dependent parameters and the selection of operating conditions such as web speed.

References

References
1.
Gutoff
,
E. B.
, and
Cohen
,
E. D.
,
2006
,
Coating and Drying Defects: Troubleshooting Operating Problems
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
2.
Pagilla
,
P. R.
,
Reid
,
K. N.
, and
Newton
,
J.
,
2007
, “
Modeling of Laminated Webs
,”
Proceedings of the 9th International Conference on Web Handling
, Stillwater, OK.
3.
Seshadri
,
A.
,
Pagilla
,
P. R.
, and
Lynch
,
J. E.
,
2013
, “
Modeling Print Registration in Roll-to-Roll Printing Presses
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
3
), p.
031016
.10.1115/1.4023761
4.
MacDonald
,
W. A.
,
2004
, “
Engineered Films for Display Technologies
,”
J. Mater. Chem.
,
14
, pp.
4
10
.10.1039/b310846p
5.
Ponjanda-Madappa
,
M.
,
2011
, “
Roll to Roll Manufacturing of Flexible Electronic Devices
,” M.S. thesis, Oklahoma State University, Stillwater, OK.
6.
Søndergaard
,
R.
,
Hösel
,
M.
,
Angmo
,
D.
,
Larsen-Olsen
,
T. T.
, and
Krebs
,
F. C.
,
2012
, “
Roll-to-Roll Fabrication of Polymer Solar Cells
,”
Mater. Today
,
15
(
1–2
), pp.
36
49
.10.1016/S1369-7021(12)70019-6
7.
Myers
,
G. E.
,
1998
,
Analytical Methods in Conduction Heat Transfer,
2nd ed.
AMCHT Publications
,
Madison, WI
.
8.
Powers
,
D. L.
,
2009
,
Boundary Value Problems: And Partial Differential Equations
,
6th ed.
Academic
, Burlington, MA.
9.
Hahn
,
D. W.
, and
Özişik
,
M. N.
,
2012
,
Heat Conduction
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.10.1002/9781118411285
10.
Jones
,
D. P.
,
McCann
,
M. J.
, and
Abbott
,
S. J.
,
2011
, “
Web Tension Variations Caused by Temperature Changes and Slip on Rollers
,”
Proceedings of the 11th International Conference on Web Handling
, Stillwater, OK, June 12–15.
11.
Lee
,
C.
,
Kang
,
H.
, and
Shin
,
K.
,
2010
, “
A Study on Tension Behavior Considering Thermal Effects in Roll-to-Roll E-Printing
,”
J. Mech. Sci. Technol.
,
24
(
5
), pp.
1097
1103
.10.1007/s12206-010-0324-5
12.
Mukherjee
,
N.
, and
Sinha
,
P. K.
,
1994
, “
A Comparative Finite Element Heat Conduction Analysis of Laminated Composite Plates
,”
Comput. Struct.
,
52
(
3
), pp.
505
510
.10.1016/0045-7949(94)90236-4
13.
Singh
,
I. V.
,
2004
, “
A Numerical Solution of Composite Heat Transfer Problems Using Meshless Method
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2123
2138
.10.1016/j.ijheatmasstransfer.2003.12.013
14.
Ahmadi
,
I.
, and
Aghdam
,
M.
,
2011
, “
Heat Transfer in Composite Materials Using a New Truly Local Meshless Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
(
3
), pp.
293
309
.10.1108/09615531111108477
15.
de Monte
,
F.
,
2006
, “
Multi-Layer Transient Heat Conduction Using Transition Time Scales
,”
Int. J. Therm. Sci.
,
45
, pp.
882
892
.10.1016/j.ijthermalsci.2005.11.006
16.
Oturanç
,
G.
, and
Sahin
,
A. Z.
,
2001
, “
Eigenvalue Analysis of Temperature Distribution in Composite Walls
,”
Int. J. Energy Res.
,
25
, pp.
1189
1196
.10.1002/er.747
17.
Yuen
,
W. Y. D.
,
1985
, “
On the Heat Transfer of a Moving Composite Strip Compressed by Two Rotating Cylinders
,”
ASME J. Heat Transfer
,
107
(
3
), pp.
541
548
.10.1115/1.3247458
18.
de Monte
,
F.
,
2002
, “
An Analytic Approach to the Unsteady Heat Conduction Processes in One-Dimentsional Composite Media
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1333
1343
.10.1016/S0017-9310(01)00226-5
19.
Hickson
,
R. I.
,
Barry
,
S. I.
, and
Mercer
,
G. N.
,
2009
, “
Exact and Numerical Solutions for Effective Diffusivity and Time Lag through Multiple Layers
,” Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, Canberra, Australia, Vol. 50, pp. C682–C695.
20.
Zedan
,
M. F.
, and
Mujahid
,
A. M.
,
1993
, “
Laplace Transform Solution for Heat Transfer in Composite Walls With Periodic Boundary Conditions
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
263
265
.10.1115/1.2910659
21.
Miller
,
J.
, and
Weaver
,
P.
,
2003
, “
Temperature Profiles in Composite Plates Subject to Time-Dependent Complex Boundary Conditions
,”
Compos. Struct.
,
59
, pp.
267
278
.10.1016/S0263-8223(02)00054-5
22.
Lu
,
Y.
, and
Pagilla
,
P. R.
,
2014
, “
Adaptive Control of Web Tension in a Heat Transfer Section of a Roll-to-Roll Manufacturing Process Line
,”
American Control Conference, American Automatic Control Council
, Portland, OR, pp.
1799
1804
.
23.
Pagilla
,
P. R.
,
Siraskar
,
N. B.
, and
Dwivedula
,
R. V.
,
2007
, “
Decentralized Control of Web Processing Lines
,”
IEEE Trans. Control Syst. Technol.
,
15
, pp.
106
117
.10.1109/TCST.2006.883345
24.
Lightbourn
,
E. D.
,
1999
, “
Thermal Contact Resistance of Metal Roller to Plastic Web Interfaces
,” M.S. thesis, University of Wisconsin-Madison, Madison, WI.
25.
Fuller
,
J. J.
, and
Marotta
,
E. E.
,
2001
, “
Thermal Contact Conductance of Metal/Polymer Joints: An Analytical and Experimental Investigation
,”
J. Thermophys. Heat Transfer
,
15
(
2
), pp.
228
238
.10.2514/2.6598
26.
Fulford
,
G.
, and
Broadbridge
,
P.
,
2002
,
Industrial Mathematics: Case Studies in the Diffusion of Heat and Matter
(Australian Mathematical Society Lecture Series),
Cambridge University
,
Cambridge, UK
.
27.
Barton
,
N. D.
,
1985
, “
Optimal Control of a Steel Slab Caster
,”
Mathematics in Industry Study Group Proceedings
,
N. G.
Barton
, and
J. D.
Gray
, eds.,
CSIRO Division of Mathematics and Statistics
, Kensington, Australia, pp.
13
27
.
28.
Tittle
,
C. W.
,
1965
, “
Boundary Value Problems in Composite Media: Quasi-Orthogonal Functions
,”
J. Appl. Phys.
,
36
(
4
), pp.
1486
1488
.10.1063/1.1714335
29.
Marotta
,
E. E.
, and
Fletcher
,
L. S.
,
1996
, “
Thermal Contact Conductance of Selected Polymeric Materials
,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
334
342
.10.2514/3.792
30.
Churchill
,
S. W.
,
1976
, “
A Comprehensive Correlating Equation for Forced Convection from Flat Plates
,”
Am. Inst. Chem. Eng. J.
,
22
(
2
), pp.
264
268
.10.1002/aic.690220207
You do not currently have access to this content.