Planar-flow spin casting is a rapid solidification process used in the manufacture of thin, metallic ribbon, and foil. Liquid metal is solidified against a cool, rotating wheel which absorbs the super heat and latent heat of the metal. Industry typically implements an actively cooled wheel. However, validation of unsteady models requires observations from unsteady experiments. Experiments from our laboratory with an uncooled wheel show different temperature–time traces at different positions. Given a specified heat loading, a full conduction model predicts temperature fields within the wheel as they evolve with time. In this paper, we obtain reduced-order conduction models which take account of the various relevant length- and time-scales, with guidelines as to their validity. Model validation compares against measured temperatures from our casting machine. Finally, the model is modified to include internal cooling of the wheel to predict steady state behaviors. Spin casting can freeze molten metal sufficiently rapidly to achieve metallic glasses for a number of alloys whose properties in that state enable ultra-efficient energy conversion devices, alloys of increasing importance to energy conservation/harvesting.

References

References
1.
Narasimhan
,
M.
,
1979
, “
Continuous Casting Method for Metallic Strips
,” U.S. Patent No. 4,142,571.
2.
Hasegawa
,
R.
,
2000
, “
Present Status of Amorphous Soft Magnetic Alloys
,”
J. Magn. Magn. Mater.
,
215
, pp.
240
245
.10.1016/S0304-8853(00)00126-8
3.
Hasegawa
,
R.
, and
Azuma
,
D.
,
2008
, “
Impacts of Amorphous Metal-Based Transformers on Energy Efficiency and Environment
,”
J. Magn. Magn. Mater.
,
320
(
20
), pp.
2451
2456
.10.1016/j.jmmm.2008.04.052
4.
Li
,
D.
,
Zhuang
,
J.
,
Liu
,
T.
,
Lu
,
Z.
, and
Zhou
,
S.
,
2011
, “
The Pressure Loss and Ribbon Thickness Prediction in Gap Controlled Planar-Flow Casting Process
,”
J. Mater. Process. Technol.
,
211
(
11
), pp.
1764
1767
.10.1016/j.jmatprotec.2011.05.019
5.
Herzer
,
G.
,
2003
, “
Magnetic Materials for Electronic Article Surveillance
,”
J. Magn. Magn. Mater.
,
254
, pp.
598
602
.10.1016/S0304-8853(02)00930-7
6.
Hahn
,
G.
, and
Schönecker
,
A.
,
2004
, “
New Crystalline Silicon Ribbon Materials for Photovoltaics
,”
J. Phys.: Condens. Matter
,
16
(
50
), pp. 1615–1648.10.1088/0953-8984/16/50/R03
7.
Branagan
,
D.
,
Meacham
,
B.
, and
Sergueeva
,
A.
,
2012
, “
Ductile Metallic Glasses
,” U.S. Patent No. 8,317,949 B2.
8.
Branagan
,
D.
,
Meacham
,
B.
, and
Sergueeva
,
A.
,
2012
, “
Ductile Metallic Glasses in Ribbon Form
,” U.S. Patent No. 2,012,0263,621 A1.
9.
Kavesh
,
S.
,
1978
, “
Principles of Fabrication
,”
Metallic Glasses
,
ASM
,
Metals Park, OH
, pp.
36
73
.
10.
Theisen
,
E.
,
Davis
,
M.
,
Weinstein
,
S.
, and
Steen
,
P.
,
2010
, “
Transient Behavior of the Planar-Flow Melt Spinning Process
,”
Chem. Eng. Sci.
,
65
(
10
), pp.
3249
3259
.10.1016/j.ces.2010.02.018
11.
Carpenter
,
J.
, and
Steen
,
P.
,
1990
, “
On the Heat Transfer to the Wheel in Planar-Flow Melt Spinning
,”
Metall. Mater. Trans. B
,
21
(
2
), pp.
279
283
.10.1007/BF02664195
12.
Takeshita
,
K.
, and
Shingu
,
P.
,
1983
, “
An Analysis of the Heat Transfer Problem With Phase Transformation During Rapid Quenching
,”
Trans. Jpn. Inst. Met.
,
24
(6), pp.
293
296
.10.2320/matertrans1960.24.293
13.
Takeshita
,
K.
, and
Shingu
,
P.
,
1986
, “
Thermal Contact During the Cooling by the Single Roller Chill Block Casting
,”
Trans. Jpn. Inst. Met.
,
27
(6), pp.
454
462
.10.2320/matertrans1960.27.454
14.
Wang
,
G.
, and
Matthys
,
E.
,
1991
, “
Modelling of Rapid Solidification by Melt Spinning: Effect of Heat Transfer in the Cooling Substrate
,”
Mater. Sci. Eng. A
,
136
, pp.
85
97
.10.1016/0921-5093(91)90444-R
15.
Byrne
,
C. J.
,
Kueck
,
A. M.
,
Baker
,
S. P.
, and
Steen
,
P. H.
,
2007
, “
In Situ Manipulation of Cooling Rates During Planar-Flow Melt Spinning Processing
,”
Mater. Sci. Eng. A
,
459
(
12
), pp.
172
181
.10.1016/j.msea.2006.12.123
16.
Liu
,
H.
,
Chen
,
W.
,
Qiu
,
S.
, and
Liu
,
G.
,
2009
, “
Numerical Simulation of Initial Development of Fluid Flow and Heat Transfer in Planar Flow Casting Process
,”
Metall. Mater. Trans. B
,
40
(
3
), pp.
411
429
.10.1007/s11663-009-9236-0
17.
Kukura
,
J.
,
Ford
,
K.
,
Singh
,
A.
,
Steen
,
P.
, and
Ibaraki
,
T.
,
1995
, “
Measurement of Heat Transfer Coefficient in Planar Flow Casting
,”
Simul. Mater. Process.: Theory, Methods Appl.
, pp.
1153
1157
.
18.
Li
,
G.
, and
Thomas
,
B.
,
1996
, “
Transient Thermal Model of the Continuous Single-Wheel Thin-Strip Casting Process
,”
Metall. Mater. Trans. B
,
27
(
3
), pp.
509
525
.10.1007/BF02914916
19.
Tkatch
,
V.
,
Denisenko
,
S.
, and
Beloshov
,
O.
,
1997
, “
Direct Measurements of the Cooling Rates in the Single Roller Rapid Solidification Technique
,”
Acta Mater.
,
45
(
7
), pp.
2821
2826
.10.1016/S1359-6454(96)00377-1
20.
Tkatch
,
V.
,
Limanovskii
,
A.
,
Denisenko
,
S.
, and
Rassolov
,
S.
,
2002
, “
The Effect of the Melt-Spinning Processing Parameters on the Rate of Cooling
,”
Mater. Sci. Eng. A
,
323
(
1
), pp.
91
96
.10.1016/S0921-5093(01)01346-6
21.
Tkatch
,
V.
,
Grishin
,
A.
, and
Maksimov
,
V.
,
2009
, “
Estimation of the Heat Transfer Coefficient in Melt Spinning Process
,”
J. Phys.: Conf. Ser.
,
144
, p.
012104
.10.1088/1742-6596/144/1/012104
22.
Karpe
,
B.
,
Kosec
,
B.
,
Kolenko
,
T.
, and
Bizjak
,
M.
,
2011
, “
Heat Transfer Analyses of Continuous Casting by Free Jet Meltspinning Device
,”
Metalurgija
,
50
(
1
), pp.
13
16
.
23.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
, Vol.
1
,
Clarendon
,
Oxford, UK
, pp.
112
, 132.
You do not currently have access to this content.