This paper develops a mathematical model for predicting the thermal response in the surgical drilling of bone. The model accounts for the bone, chip, and drill bit interactions by providing a detailed account of events within a cylindrical control volume enveloping the drill, the cut bone chip within the drill bit flute, and the solid bone. Lumped parameter approach divides the control volume into a number of cells, and cells within the subvolumes representing the drill solid, the bone chip, and the bone solid are allowed to interact. The contact mechanics of rough surfaces is used to model chip–flute and chip–bone frictional interaction. In this way, not only the quantification of friction due to sliding contact of chip–flute and chip–bone rough surface contact is treated but also the contact thermal resistances between the rubbing surfaces are included in the model. A mixed combination of constant and adaptive mesh is employed to permit the simulation of the heat transfer as the drill bit penetrates deeper into the bone during a drilling process. Using the model, the effect of various parameters on the temperature rise in bone, drill, and the chip is investigated. It is found that maximum temperature within the bone occurs at the location adjacent to the corner of the drill-tip and drill body. The results of the model are found to agree favorably with the experimental measurements reported within the existing literature on surgical drilling.

References

References
1.
Ardan
,
N. I.
, Jr.
,
Janes
,
J. M.
, and
Herrick
,
J. F.
,
1957
, “
Ultrasonic Energy and Surgically Produced Defects in Bone
,”
J. Bone Jt. Surg.
,
39
(
2
), pp.
394
402
.
2.
Tu
,
Y. K.
,
Tsai
,
H. H.
,
Chen
,
L. W.
,
Huang
,
C. C.
, and
Lin
,
L. C.
,
2008
, “
Finite Element Simulation of Drill Bit and Bone Thermal Contact During Drilling
,”
2nd International Conference of Bioinformatics and Biomedical Engineering
, pp.
1268
1271
.
3.
Boyne
,
P. J.
,
1966
, “
Histologic Response of Bone to Sectioning by High-Speed Rotary Instruments
,”
J. Dent. Res.
,
45
(
2
), pp.
270
276
.10.1177/00220345660450020901
4.
Moss
,
R. W.
,
1964
, “
Histopathologic Reaction of Bone to Surgical Cutting
,”
Oral Surg. Oral Med. Oral Pathol.
,
17
(
5
), pp.
405
414
.10.1016/0030-4220(64)90515-8
5.
Kramer
,
I. R. H.
,
1960
, “
Changes in Dentine During Cavity Preparation Using Turbine Hand Pieces
,”
Br. Dent. J.
,
109
, pp.
59
64
.
6.
Spatz
,
S.
,
1965
, “
Early Reaction in Bone Following the Use of Burs Rotating at Conventional and Ultra Speeds
,”
Oral Surg. Oral Med. Oral Pathol.
,
19
(
6
), pp.
808
816
.10.1016/0030-4220(65)90353-1
7.
Abouzgia
,
M. B.
, and
James
,
D. F.
,
1997
, “
Temperature Rise During Drilling Through Bone
,”
Int. J. Oral Maxillofac. Implants
,
12
(
3
), pp.
342
353
.
8.
Bachus
,
K. N.
,
Rondina
,
M. T.
, and
Hutchinson
,
D. T.
,
2000
, “
The Effects of Drilling Force on Cortical Temperatures and Their Duration: An in vitro Study
,”
Med. Eng. Phys.
,
22
, pp.
685
691
.10.1016/S1350-4533(01)00016-9
9.
Davidson
,
S. H.
, and
James
,
D. F.
,
2003
, “
Drilling in Bone: Modeling Heat Generation and Temperature Distribution
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
305
314
.10.1115/1.1535190
10.
Soriano
,
J.
,
Iriarte
,
L. M.
,
Eguren
,
J. A.
,
Aristimuño
,
P.
,
Garay
,
A.
, and
Arrazola
,
P. J.
,
2012
, “
Effects of Rotational Speed and Feed Rate on Temperature Rise, Feed Force and Cutting Torque When Drilling Bovine Cortical Bone
,”
AIP Conf. Proc.
,
1431
, pp.
408
416
.10.1063/1.4707590
11.
Vaughn
,
R. C.
, and
Peyton
,
F. A.
,
1951
, “
The Influence of Rotational Speed on Temperature Rise During Cavity Preparation
,”
J. Dent. Res.
,
30
(
5
), pp.
737
744
.10.1177/00220345510300051801
12.
Nam
,
O.
,
Yu
,
W.
,
Choi
,
M. Y.
, and
Kyung
,
H. M.
,
2006
, “
Monitoring of Bone Temperature Osseous Preparation for Orthodontic Micro-Screw Implants: Effects of Motor Speed and Pressure
,”
Key Eng. Mater.
,
321–323
, pp.
1044
1047
.10.4028/www.scientific.net/KEM.321-323.1044
13.
Natali
,
C.
,
Ingle
,
P.
, and
Dowell
,
J.
,
1996
, “
Orthopaedic Bone Drills-Can They Be Improved? Temperature Changes Near the Drilling Face
,”
J. Bone Jt. Surg. Br. Vol.
,
78B
(
3
), pp.
357
362
.
14.
Hillery
,
M. T.
, and
Shuaib
,
I.
,
1999
, “
Temperature Effects on the Drilling of Human and Bovine One
,”
J. Mater. Process. Technol.
,
92–93
, pp.
302
308
.
15.
Oliveira
,
N.
,
Alaejos-Algarra
,
F.
,
Mareque-Bueno
,
J.
,
Ferrés-Padró
,
E.
, and
Hernández-Alfaro
,
F.
,
2012
, “
Thermal Changes and Drill Wear in Bovine Bone During Implant Site Preparation. A Comparative in vitro Study: Twisted Stainless Steel and Ceramic Drills
,”
Clin. Oral Implants Res.
,
23
(
8
), pp.
963
969
.10.1111/j.1600-0501.2011.02248.x
16.
Kalidini
,
V.
,
2004
, “
Optimization of Drill Design and Coolant System During Dental Implant Surgery
,” M.S. thesis, University of Kentucky, Lexington, KY.
17.
Lee
,
J.
,
Rabin
,
Y.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A New Thermal Model for Bone Drilling With Applications to Orthopedic Surgery
,”
Med. Eng. Phys.
,
33
, pp.
1234
1244
.10.1016/j.medengphy.2011.05.014
18.
Brisman
,
D. L.
,
1996
, “
The Effect of Speed, Pressure, and Time on Bone Temperature During the Drilling of Implant Sites
,”
Int. J. Oral Maxillofac. Implants
,
11
(
1
), pp.
35
37
.
19.
Klika
,
V.
, ed.,
2011
,
Biomechanics in Applications
,
Intech Open Access Publisher
,
Rijeka
, Chap. 3.
20.
Jacobs
,
C. H.
,
Berry
,
J. T.
,
Pope
,
M. H.
, and
Hoaglund
,
F.
,
1976
, “
A Study of Bone Machining Process—Drilling
,”
J. Biomech.
,
9
, pp.
343
349
.10.1016/0021-9290(76)90056-7
21.
Pandey
,
R. K.
, and
Panda
,
S. S.
,
2013
, “
Predicting Temperature in Orthopaedic Drilling Using Back Propagation Neural Network
,”
Procedia Eng.
,
51
, pp.
676
682
.10.1016/j.proeng.2013.01.096
22.
Lee
,
J.
,
Gozen
,
B. A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Modeling and Experimentation of Bone Drilling Forces
,”
J. Biomech.
,
45
(
6
), pp.
1076
1083
.10.1016/j.jbiomech.2011.12.012
23.
Sui
,
J.
,
Sugita
,
N.
,
Ishii
,
K.
,
Harada
,
K.
, and
Mitsuishi
,
M.
,
2014
, “
Mechanistic Modeling of Bone-Drilling Process With Experimental Validation
,”
J. Mater. Process. Tech.
,
214
(
4
), pp.
1018–1026
.10.1016/j.jmatprotec.2013.11.001
24.
Mellinger
,
J. C.
,
Ozdoganlar
,
O. B.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Modeling Chip-Evacuation Forces in Drilling for Various Flute Geometries
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
405
415
.10.1115/1.1578671
25.
Boothroyd
,
G.
,
1963
, “
Temperatures in Orthogonal Metal Cutting
,”
Proc. Inst. Mech. Eng.
,
177
, pp.
789
810
.10.1243/PIME_PROC_1963_177_058_02
26.
Ernst
,
H.
, and
Merchant
,
M. E.
,
1941
, “
Chip Formation, Friction and High Quality Machined Surfaces
,”
Trans. Am. Soc. Met.
,
29
, pp.
299
378
.
27.
Mellinger
,
J. C.
,
Ozdoganlar
,
O. B.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2002
, “
Modeling Chip-Evacuation Forces and Prediction of Chip-Clogging in Drilling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
605
614
.10.1115/1.1473146
28.
Bhushan
,
B.
,
2002
,
Introduction to Tribology
, John Wiley & Sons, Inc.,
New York
, Chap. 6.
29.
Archard
,
J. F.
,
1959
, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
, pp.
438
455
.10.1016/0043-1648(59)90159-0
30.
Elhomani
,
A.
, and
Farhang
,
K.
,
2010
, “
A 2D Lumped Parameter Model for Prediction of Temperature in C/C Composite Disk Pair in Dry Friction Contact
,”
ASME J. Thermal Sci. Eng. Appl.
2
(
2
), p.
021001
.10.1115/1.4002523
31.
Greenwood
,
J. A.
, and
Williamson
,
J. B.
,
1966
, “
Contact of Nominally Flat surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.10.1098/rspa.1966.0242
32.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Ins. Mech. Eng.
,
185
, pp.
625
634
.10.1243/PIME_PROC_1970_185_069_02
33.
Anderson
,
J. T.
,
Saunders
,
O. A.
,
1953
, “
Convection From an Isolated Heated Horizontal Cylinder Rotating About its Axis
,”
Proc. R. Soc. London, Ser. A
,
217
(
1131
), pp.
555
562
.10.1098/rspa.1953.0080
34.
Rancourt
,
D.
,
Shirazi-Adl
,
A.
,
Drouin
,
G.
, and
Paiement
,
G.
,
1990
, “
Friction Properties of the Interface Between Porous-Surfaced Metals and Tibial Cancellous Bone
,”
J. Biomed. Mater. Res.
,
24
(
11
), pp.
1503
1519
.10.1002/jbm.820241107
35.
Mathews
,
L. S.
,
Green
,
C. A.
, and
Goldstein
S. A.
,
1984
, “
The Thermal Effect of Skeletal Fixation-Pin Insertion in Bone
,”
J. Bone Jt. Surg.
,
66
(
3
), pp.
1077
1083
.
36.
Saha
,
S.
,
Pal
,
S.
, and
Albright
,
J.
,
1982
, “
Surgical Drilling: Design and Performance of an Improved Drill
,”
ASME J. Biomech. Eng.
,
104
(
3
), pp.
245
252
.10.1115/1.3138356
37.
Toews
,
A. R.
,
Baily
,
J. V.
,
Townsend
,
H. G.
, and
Barber
,
S. M.
,
1999
, “
Effect of Feed Rate and Drill Speed on Temperature in Equine Cortical Bone
,”
Am. J. Vet. Res.
,
60
(
8
), pp.
942
944
.
You do not currently have access to this content.