In this study, heat transfer performance of nanofluids (Al2O3/water and CuO/water nanofluid) is experienced by using the condensing unit of an air conditioner. Nanoparticles at 30 nm are suspended at various volume concentrations (1%, 2%, 3%, and 4%) in the base fluid are produced for this current work. The nanofluids, considered as a cooling fluid, flow in the outer side of the tube of condenser, and general working condition of the air conditioner is applied for the investigation. Experimental results highlight the enhancement of heat transfer rate because of the existence of nanoparticles in the fluid. Two nanofluids show better heat transfer rate than does the base fluid. The Nusselt numbers for CuO/water and Al2O3/water nanofluids are enhanced up to 39.48% and 33.86%, respectively. The findings show that CuO/water nanofluids exhibit better heat transfer rate than Al2O3/water nanofluids.

References

References
1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Argonne National Laboratory, Report Nos. ANL/MSD/CP--84938 and CONF-951135--29.
2.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
, pp.
280
289
.10.1115/1.2825978
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.10.1063/1.1341218
4.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
,
1999
, “
Thermal Conductivity of Nanoparticle–Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.10.2514/2.6486
5.
Pang
,
C.
,
Jung
,
Y. J.
,
Lee
,
J.
, and
Kang
,
Y. T.
,
2012
, “
Thermal Conductivity Measurement of Methanol-Based Nanofluids With Al2O3 and SiO2 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
55
, pp.
5597
5602
.10.1016/j.ijheatmasstransfer.2012.05.048
6.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
Journal of Applied Physics
,
99
(8), p.
084314
.
7.
Naraki
,
M.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Vermahmoudi
,
Y.
,
2013
, “
Parametric Study of Overall Heat Transfer Coefficient of CuO/Water Nanofluids in a Car Radiator
,”
Int. J. Thermal Sci.
,
66
, pp.
82
90
.10.1016/j.ijthermalsci.2012.11.013
8.
Fotukian
,
S. M.
, and
Nasr Esfahany
,
M.
,
2010
, “
Experimental Investigation of Turbulent Convective Heat Transfer of Dilute ?-Al2O3/Water Nanofluid Inside a Circular Tube
,”
Int. J. Heat Fluid Flow
,
31
, pp.
606
612
.10.1016/j.ijheatfluidflow.2010.02.020
9.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid for an Electronic Liquid Cooling System
,”
Int. J. Appl. Therm. Eng.
,
27
, pp.
1501
1506
.10.1016/j.applthermaleng.2006.09.028
10.
Wongcharee
,
K.
, and
Eiamsa-ard
,
S.
,
2012
, “
Heat Transfer Enhancement by using CuO/Water Nanofluid in Corrugated Tube Equipped With Twisted Tape
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
251
257
.10.1016/j.icheatmasstransfer.2011.11.010
11.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Chandra Bose
,
A.
,
2012
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Al2O3/Water Nanofluid in a Circular Pipe Under Laminar Flow With Wire Coil Inserts
,”
Int. J. Exp. Therm. Fluid Sci.
,
34
, pp.
122
130
.10.1016/j.expthermflusci.2009.10.001
12.
Pandey
,
S. D.
, and
Nema
,
V. K.
,
2012
, “
Experimental Analysis of Heat Transfer and Friction Factor of Nanofluid as a Coolant in a Corrugated Plate Heat Exchanger
,”
Int. J. Exp. Therm. Fluid Sci.
,
38
, pp.
248
256
.10.1016/j.expthermflusci.2011.12.013
13.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
G.
,
2007
, “
Numerical Investigation of Nanofluid Laminar Convective Heat Transfer Through a Circular Tube
,”
Int. J. Numer. Heat Transfer Appl.
,
52
, pp.
1043
1058
.10.1080/10407780701364411
14.
Hashemi
,
S. M.
, and
Akhavan-Behabadi
,
M. A.
,
2012
, “
An Empirical Study on Heat Transfer and Pressure Drop Characteristics of CuO–Base Oil Nanofluid Flow in a Horizontal Helically Coiled Tube Under Constant Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
144
151
.10.1016/j.icheatmasstransfer.2011.09.002
15.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4607
4618
.10.1016/j.ijheatmasstransfer.2010.06.032
16.
Nassan
,
T. H.
,
Zeinali Heris
,
S.
, and
Noie
,
S. H.
,
2010
, “
A Comparison of Experimental Heat Transfer Characteristics for Al2O3/Water and CuO/Water Nanofluids in Square Cross-section Duct
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
924
928
.10.1016/j.icheatmasstransfer.2010.04.009
17.
Zamzamian
,
A.
,
Oskouie
,
S. N.
,
Doosthoseini
,
A.
,
Joneidi
,
A.
, and
Pazouki
,
M.
,
2011
, “
Experimental Investigation of Forced Convective Heat Transfer Coefficient in Nanofluids of Al2O3/EG and CuO/EG in a Double Pipe and Plate Heat Exchangers Under Turbulent Flow
,”
Int. J. Exp. Therm. Fluid Sci.
,
35
, pp.
495
502
.10.1016/j.expthermflusci.2010.11.013
18.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
A Comparison of Thermal Characteristics of Al2O3/Water and CuO/Water Nanofluids in Transition Flow Through a Straight Circular Duct Fitted With Helical Screw Tape Inserts
,”
Int. J. Exp. Therm. Fluid Sci.
,
39
, pp.
37
44
.10.1016/j.expthermflusci.2012.01.004
19.
Nasiri
,
M.
,
Gh. Etemad
,
S.
, and
Bagheri
,
R.
,
2011
, “
Experimental Heat Transfer of Nanofluid Through an Annular Duct
,”
Int. Commun. Heat Mass Transfer
,
38
, pp.
958
963
.10.1016/j.icheatmasstransfer.2011.04.011
You do not currently have access to this content.