This study compares the performance of three different nanofluids containing aluminum oxide, copper oxide, and silicon dioxide nanoparticles dispersed in the same base fluid, 60:40 ethylene glycol and water by mass, as coolant in automobile radiators. The computational scheme adopted here is the effectiveness-number of transfer unit (ε − NTU) method encoded in matlab. Appropriate correlations of thermophysical properties for these nanofluids developed from measurements are summarized in this paper. The computational scheme has been validated by comparing the results of pumping power, convective heat transfer coefficients on the air and coolant side, overall heat transfer coefficient, effectiveness and NTU, reported by other researchers. Then the scheme was adopted to compute the performance of nanofluids. Results show that a dilute 1% volumetric concentration of nanoparticles performs better than higher concentration. It is proven that at optimal conditions of operation of the radiator, under the same heat transfer basis, a reduction of 35.3% in pumping power or 7.4% of the surface area can be achieved by using the Al2O3 nanofluid. The CuO nanofluid showed slightly lower magnitudes than the Al2O3 nanofluid, with 33.1% and 7.2% reduction for pumping power or surface area respectively. The SiO2 nanofluid showed the least performance gain of the three nanofluids, but still could reduce the pumping power or area by 26.2% or 5.2%. The analysis presented in this paper was used for an automotive radiator but can be extended to any liquid to gas heat exchanger.

References

References
1.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
324
324
.10.1007/s11051-005-6635-2
2.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
3.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
4.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2013
,
Nanoparticle Heat Transfer and Fluid Flow
,
CRC Press/Taylor & Francis Group
,
Boca Raton, FL
.
5.
2011
, “
International Organization of Motor Vehicle Manufacturers
,”
http://
www.oica.net/category/production-statistics/
6.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
Krieger Pub. Co.
, Malabar, FL.
7.
Fraas
,
A. P.
,
1989
,
Heat Exchanger Design
,
Wiley
,
New York
.
8.
Fellague
,
K. A.
,
Hu
,
S. H.
, and
Willoughby
,
D. A.
,
1994
, “
Determination of the Effects of Inlet Air Velocity and Temperature Distributions on the Performance of an Automotive Radiator
,”
International Congress and Exposition, SAE International
,
Detroit, MI
.
9.
Gollin
,
M.
, and
Bjork
,
D.
,
1996
, “
Comparative Performance of Ethylene Glycol/Water and Propylene Glycol/Water Coolants in Automobile Radiators
,”
International Congress and Exposition, SAE International
,
Detroit, MI
.
10.
Beard
,
R. A.
, and
Smith
,
G. J.
,
1971
, “
A Method of Calculating the Heat Dissipation From Radiators to Cool Vehicle Engines
,”
Automotive Engineering Congress, SAE International
,
Detroit, MI
.
11.
Eitel
,
J.
,
Woerner
,
G. T.
,
Horoho
,
S.
, and
Mamber
,
O.
,
1999
, “
The Aluminum Radiator for Heavy Duty Trucks
,”
International Truck and Bus Metting Exposition, SAE International
,
Detroit, MI
.
12.
Liu
,
D.
,
Hou
,
J.
, and
Xu
,
X.
,
1993
, “
Analysis and Computation of Characteristic of the Water Cooling and Radiating System for a Heavy Duty Truck Diesel Engine
,”
Seventh International Pacific Conferences and Exposition on Automotive Engineering, SAE International
,
Phoenix, AZ
.
13.
Cozzone
,
G. E.
,
1999
, “
Effect of Coolant Type on Engine Operating Temperatures
,”
International Congress and Exposition, SAE International
,
Detroit, MI
.
14.
Vasu
,
V.
,
Rama Krishna
,
K.
, and
Kumar
,
A. C. S.
,
2008
, “
Thermal Design Analysis of Compact Heat Exchanger Using Nanofluids
,”
Int. J. Nanomanuf.
,
2
(
3
), pp.
271
288
.10.1504/IJNM.2008.018949
15.
Leong
,
K. Y.
,
Saidur
,
R.
,
Kazi
,
S. N.
, and
Mamun
,
A. H.
,
2010
, “
Performance Investigation of an Automotive Car Radiator Operated With Nanofluid-Based Coolants (Nanofluid as a Coolant in a radiator)
,”
Appl. Therm. Eng.
,
30
(
17–18
), pp.
2685
2692
.10.1016/j.applthermaleng.2010.07.019
16.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. M.
, and
Seifi Jamnani
,
M.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.10.1016/j.icheatmasstransfer.2011.07.001
17.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Namburu
,
P. K.
,
2010
, “
Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
613
621
.10.1016/j.ijheatfluidflow.2010.02.016
18.
Gupta
,
A.
, and
Kumar
,
R.
,
2007
, “
Role of Brownian Motion on the Thermal Conductivity Enhancement of Nanofluids
,”
Appl. Phys. Lett.
,
91
(
22
), p. 223102.
19.
Yu
,
W.
,
France
,
D. M.
,
Timofeeva
,
E. V.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2010
, “
Thermophysical Property-Related Comparison Criteria for Nanofluid Heat Transfer Enhancement in Turbulent Flow
,”
Appl. Phys. Lett.
,
96
(
21
), p.
213109
.
20.
Wu
,
Z.
,
Wang
,
L.
, and
Sundén
,
B.
,
2013
, “
Pressure Drop and Convective Heat Transfer of Water and Nanofluids in a Double-Pipe Helical Heat Exchanger
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
266
274
.10.1016/j.applthermaleng.2013.06.051
21.
ASHRAE
,
2005
,
ASHRAE Handbook: Fundamentals, American Society of Heating
,
Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
22.
Yaws
,
C. L.
,
1977
,
Physical Properties: A Guide to the Physical, Thermodynamic, and Transport Property Data of Industrially Important Chemical Compounds
,
McGraw-Hill
,
New York
.
23.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
24.
Çengel
,
Y. A.
,
2007
,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
26.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), pp.
1
10
.10.1115/1.3090813
27.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2012
, “
A Review and Analysis on Influence of Temperature and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer, and Pumping Power
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4063
4078
.10.1016/j.ijheatmasstransfer.2012.03.048
28.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
.10.1016/j.ijheatmasstransfer.2010.06.032
29.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Mahagaonkar
,
B. M.
,
2009
, “
Density Measurement of Different Nanofluids and Their Comparison With Theory
,”
Pet. Sci. Technol.
,
27
(
6
), pp.
612
624
.10.1080/10916460701857714
30.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
31.
Sahoo
,
B. C.
,
2008
, “
Measurement of Rheological and Thermal Properties and the Freeze-Thaw Characteristics of Nanofluids
,” Master's, University of Alaska Fairbanks, AK.
32.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Dandekar
,
A.
, and
Das
,
D. K.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.10.1049/mnl:20070037
33.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Misra
,
D.
, and
Das
,
D. K.
,
2007
, “
Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
397
402
.10.1016/j.expthermflusci.2007.05.001
34.
Sahoo
,
B. C.
,
Vajjha
,
R. S.
,
Ganguli
,
R.
,
Chukwu
,
G. A.
, and
Das
,
D. K.
,
2009
, “
Determination of Rheological Behavior of Aluminum Oxide Nanofluid and Development of New Viscosity Correlations
,”
Pet. Sci. Technol.
,
27
(
15
), pp.
1757
1770
.10.1080/10916460802640241
35.
Bejan
,
A.
,
1993
,
Heat Transfer
,
John Wiley & Sons, Inc.
,
New York
.
36.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
367
.
37.
Ecer
,
A.
,
Toksoy
,
C.
,
Rubek
,
V.
,
Hall
,
R.
,
Gezmisoglu
,
G.
,
Pagliarulo
,
V.
,
Caruso
,
S.
, and
Azzali
,
J.
,
1995
, “
Air Flow and Heat Transfer Analysis of an Automotive Engine Radiator to Calculate Air-to-Boil Temperature
,”
International Congress and Exposition, SAE International
,
Detroit, MI
.
38.
Kreul
,
A. L.
,
1954
, “
Desing of Radiators for Automotive and Industrial Engines
,” SAE International.
39.
Oliet
,
C.
,
Oliva
,
A.
,
Castro
,
J.
, and
Pérez-Segarra
,
C. D.
,
2007
, “
Parametric Studies on Automotive Radiators
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
2033
2043
.10.1016/j.applthermaleng.2006.12.006
40.
Chiou
,
J. P.
,
1981
, “
Study of the Arrangement of Automobile Air-Conditioning Condenser and Engine Radiator in the Cooling Air Circuit
,”
International Congress and Exposition, SAE International
,
Detroit, MI
.
41.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons
,
Hoboken, NJ
.
42.
Maplesoft
,
2008
, “
Designing a More Effective Car Radiator
,”
http://
www.maplesoft.com/applications/view.aspx?SID=6403
.
43.
Bray, E. L.,
2012
, “
2012 Minerals Yearbook Aluminum
,” USGS, http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/myb1-2012-alumi.pdf
You do not currently have access to this content.