Experiments to investigate heat transfer and pressure loss are performed in a rectangular channel with an aspect ratio of 6 at very high Reynolds numbers under compressible flow conditions. Reynolds numbers up to 1.3 × 106 are tested. The presence of a turbulated wall and the resultant heat transfer enhancement against a smooth surface is investigated. Three dimpled configurations including spherical and cylindrical dimples are studied on one wide wall of the channel. The presence of discrete ribs on the same wide wall is also investigated. A steady state heat transfer measurement method is used to obtain the heat transfer coefficients while pressure taps located at several streamwise locations in the channel walls are used to record the static pressures on the surface. Experiments are performed for a wide range of Reynolds numbers from the incompressible (Re = 100,000–500,000; Mach = 0.04–0.19) to compressible flow regimes (Re = 900,000–1,300,000, Mach = 0.35–0.5). Results for low Reynolds numbers are compared to existing heat transfer data available in open literature for similar configurations. Heat transfer enhancement is found to decrease at high Re with the discrete rib configurations providing the best enhancement but highest pressure losses. However, the small spherical dimples show the best thermal performance. Results can be used for the combustor liner back side cooling at high Reynolds number flow conditions. Local measurements using the steady state, hue-detection based liquid crystal technique are also performed in the fully developed region for case 1 with large spherical dimples. Good comparison is obtained between averaged local heat transfer coefficient measurements and from thermocouple measurements.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2001
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
, Chaps. 2 and 3.
2.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,” ASME Paper No. 97-GT-437.
3.
Moon
,
H. K.
,
O'Connell
,
T.
, and
Glezer
,
B.
,
1999
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,” ASME Paper No. 99-GT-163.
4.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. of Turbomach.
,
123
, pp.
115
123
.10.1115/1.1333694
5.
Moon
,
S. W.
, and
Lau
,
S. C.
,
2002
, “
Turbulent Heat Transfer Measurements on a Wall With Concave and Cylindrical Dimples in a Square Channel
,” ASME Paper No. GT-2002-30208.
6.
Griffith
,
T. S.
,
Al-Hadhrami
,
L. M.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples
,”
ASME J. Turbomach.
,
125
, pp.
555
564
.10.1115/1.1571850
7.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2011
2020
.10.1016/S0017-9310(01)00314-3
8.
Kim
,
Y. W.
,
Arellana
,
L.
,
Vardakas
,
M.
,
Moon
,
H.-K.
, and
Smith
,
K. O.
,
2003
, “
Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers
,”
Proceeding of ASME Turbo-Expo 2003
, Atlanta, Georgia, June 16–19, Paper No. GT2003-38935.
9.
Burgess
,
N. K.
,
Oliviera
,
M. M.
, and
Ligrani
,
P. M.
,
2003
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer
,
125
, pp.
11
18
.10.1115/1.1527904
10.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2006
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,” ASME Paper No. GT2006-90628.
11.
Esposito
,
E.
,
Ekkad
,
S.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2007
, “
Comparing Extended Port and Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling
,” ASME Paper No. GT2007-27390.
12.
Lauffer
,
D.
,
Weigand
,
B.
, and
Liebe
,
R.
,
2005
, “
A Study on Local Heat Transfer Enhancement in a Rectangular Dimpled Channel With a Large Aspect Ratio
,” ASME Paper No. GT2005-68089.
13.
Lauffer
,
D.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Dahlke
,
S.
, and
Liebe
,
R.
,
2007
, “
Heat Transfer Enhancement by Impingement Cooling in a Combustor Liner Heat Shield
,” ASME Paper No. GT2007-27908.
14.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation on Staggered Impingement Heat Transfer on a Rib Roughened Plate With Different Crossflow Schemes
,” ASME Paper No. GT2010-22043.
15.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
, pp.
321
328
.10.1115/1.3250487
16.
Han
,
J. C.
,
Zhang
,
P.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer
, pp.
590
596
.10.1115/1.2910606
17.
Lau
,
S. C.
,
McMillin
,
R. D.
, and
Han
,
J. C.
,
1991
, “
Turbulent Heat Transfer and Friction in a Square Channel With Discrete Rib Turbulators
,”
ASME J. Turbomach.
,
113
, pp.
360
366
.10.1115/1.2927884
18.
Han
,
J. C.
, and
Zhang
,
P.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
, pp.
513
523
.10.1016/0017-9310(92)90286-2
19.
Kukreja
,
G. J.
,
Lau
,
S. C.
, and
McMillin
,
R. D.
,
1993
, “
Local Heat/Mass Transfer Distribution in a Square Channel With Full and V-shaped Ribs
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2013
2020
.10.1016/S0017-9310(05)80132-2
20.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
,
1994
, “
Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Walls
,”
ASME J. Heat Transfer
,
116
, pp.
58
65
.10.1115/1.2910884
21.
Maurer
,
M.
,
Wolfersdorf
,
J. V.
,
Gritsch
,
M.
,
2006
, “
An Experimental and Numerical Study of Heat Transfer and Pressure Loss in a Rectangular Channel With V-Shaped Ribs
,” ASME Paper No. GT2006-90006.
22.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped and W-Shaped Rib Turbulators in Rotating Rectangular (AR=4:1) Cooling Channels
,”
ASME J. Turbomach.
,
126
, pp.
603
613
.10.1115/1.1791286
23.
Taslim
,
M. E.
, and
Spring
,
S. D.
,
1994
, “
Effect of Turbulator Profile and Spacing on Heat Transfer and Friction in a Channel
,”
AIAA J. Thermophys. Heat Transfer
,
8
(
3
), pp.
555
562
.10.2514/3.578
24.
Taslim
,
M. E.
,
Li
,
T.
, and
Kercher
,
D. M.
,
1996
, “
Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-shaped, and Discrete Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
118
, pp.
20
28
.10.1115/1.2836602
25.
Korotky
,
G. J.
, and
Taslim
,
M. E.
,
1998
, “
Rib Heat Transfer Coefficient Measurements in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
120
, pp.
376
385
.10.1115/1.2841416
26.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45 deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
,
120
, pp.
571
579
.10.1115/1.2841755
27.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45 deg Round Corner Rib Heat Transfer Coefficients Measurements in a Square Channel
,” ASME Paper No. 98-GT-176.
28.
Astarita
,
T.
, and
Cardone
,
G.
,
2003
, “
Convective Heat Transfer in a Square Channel With Angled Ribs on Two Opposite Walls
,”
Exp. Fluids
,
34
, pp.
625
634
.10.1007/s00348-003-0605-1
29.
Chandra
,
P. R.
, and
Cook
,
M. M.
,
1994
, “
Effect of Number of Channel Ribbed Walls on Heat Transfer and Friction Characteristics of Turbulent Flows
,”
General Papers in Heat and Mass Transfer, ASME HTD
,
271
, pp.
201
209
.
30.
Chandra
,
P. R.
,
Niland
,
M. E.
, and
Han
,
J. C.
,
1997
, “
Turbulent Flow Heat Transfer and Friction in a Rectangular Channel With Varying Numbers of Ribbed Walls
,”
ASME J. Turbomach.
,
119
, pp.
374
380
.10.1115/1.2841121
31.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1998
, “
Measurements of Heat Transfer Coefficients and Friction Factors in Passages Rib-Roughened on all Walls
,”
ASME J. Turbomach.
,
120
, pp.
564
570
.10.1115/1.2841754
32.
Maurer
,
M.
,
von Wolfersdorf
,
J.
, and
Gritsch
,
M.
,
2007
, “
An Experimental and Numerical Study of Heat Transfer and Pressure Losses of V- and W-Shaped Ribs at High Reynolds Numbers
,” ASME Paper No. GT2007-27167.
33.
Zhou
,
F.
, and
Acharya
,
S.
,
2009
, “
Experimental and Computational Study of Heat/Mass Transfer and Flow Structure for Four Dimple Shapes in a Square Internal Passage
,” ASME Paper No. GT2009-60240.
34.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
,
Han
,
J. C.
,
2009
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel With 45 deg Round Edged Ribs at High Reynolds Numbers
,” ASME Paper No. GT2009-59546.
35.
Hagari
,
T.
,
Ishida
,
K.
,
Oda
,
T.
,
Douura
,
Y.
, and
Kinoshita
,
Y.
,
2010
, “
Heat Transfer and Pressure Losses of W-Shaped Small Ribs at High Reynolds Numbers for Combustor Liner
,” ASME Paper No. GT2010-23197.
36.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2011
, “
Heat Transfer Enhancement Due to Combination of Dimples, Protrusions, and Ribs in Narrow Internal Passage of Gas Turbine Blade
,” ASME Paper No. GT2011-45356.
37.
Thorpe
,
S.
,
Savarianandam
,
V.
,
Carrotte
,
J.
, and
Zedda
,
M.
,
2012
, “
An Investigation of an Impingement/Pin-Fin Cooling System for Gas Turbine Engine Combustor Applications
, ASME Paper No. GT2012-68124.
38.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2013
, “
Impingement Heat Transfer from Jet Arrays on Turbulated Target Walls at Large Reynolds Numbers
,”
Proceeding of ASME Turbo-Expo 2013
, San Antonio, Texas, June 3–7, Paper No. GT2013-95893.
39.
Incorpera
,
F.
, and
DeWitt
,
D.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
40.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.