The active magnetic regenerator (AMR) consists of a porous matrix heat exchanger whose solid phase is a magnetocaloric material (solid refrigerant) that undergoes a reversible magnetic entropy change when subjected to a changing magnetic field. The cooling capacity of the cycle is proportional to the mass of solid refrigerant, operating frequency, volumetric displacement of the heat transfer fluid and regenerator effectiveness. AMRs can be modeled via a porous media approach and a model has been developed in this work to simulate the time-dependent fluid flow and heat transfer processes in the regenerator matrix. Gadolinium (Gd) is usually adopted as a reference material for magnetic cooling at near room temperature and its magnetic temperature change and physical properties were accounted for through a combination of experimental data and the Weiss-Debye-Sommerfeld (WDS) theory. In this paper, the interaction of the applied magnetic field waveform with the heat transfer fluid displacement profile and the influence of demagnetizing effects on the AMR performance are investigated numerically. The numerical model is evaluated against experimental data for a regenerator containing spherical Gd particles.

References

References
1.
Yu
,
B.
,
Liu
,
M.
,
Egolf
,
P. W.
, and
Kitanovski
,
A.
,
2010
, “
A Review of Magnetic Refrigerator and Heat Pump Prototypes Built Before the Year 2010
,”
Int. J. Refrig.
,
33
, pp.
1029
1066
.10.1016/j.ijrefrig.2010.04.002
2.
Gschneidner
, Jr.,
K. A.
, and
Pecharsky
,
V. K.
,
2008
, “
Thirty years of near room temperature magnetic cooling: Where we are today and future prospects
,”
Int. J. Refrig.
,
31
, pp.
945
961
.10.1016/j.ijrefrig.2008.01.004
3.
Pecharsky
,
V. K.
, and
Gschneidner
, Jr.,
K. A.
,
2006
, “
Advanced Magnetocaloric Materials: What Does the Future Hold?
,”
Int. J. Refrig.
,
29
, pp.
1239
1249
.10.1016/j.ijrefrig.2006.03.020
4.
Bjørk
,
R.
,
Bahl
,
C. R. H.
,
Smith
,
A.
, and
Pryds
,
N.
,
2010
, “
Review and Comparison of Magnet Designs for Magnetic Refrigeration
,”
Int. J. Refrig.
,
33
, pp.
437
448
.10.1016/j.ijrefrig.2009.12.012
5.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
6.
Nellis
,
G.
, and
Klein
,
S.
,
2009
,
Heat Transfer
,
Cambridge University
,
New York
.
7.
Schmidt
,
F. W.
, and
Willmott
,
A. J.
,
1981
,
Thermal Energy Storage and Regeneration
,
Hemisphere Publishing Co
,
Washington, DC
.
8.
Rowe
,
A.
,
Dikeos
,
A.
, and
Tura
,
A.
,
2005
, “
Experimental Studies of a Near Room Temperature Magnetic Refrigeration
,”
Proceedings of 1st International Conference on Magnetic Refrigeration at Room Temperature
.
9.
Kitanovski
,
A.
, and
Egolf
,
P. W.
,
2006
, “
Thermodynamics of Magnetic Refrigeration
,”
Int. J. Refrig.
,
29
, pp.
3
21
.10.1016/j.ijrefrig.2005.04.007
10.
Tura
,
A.
, and
Rowe
,
A.
,
2011
, “
Permanent Magnet Magnetic Refrigerator Design and Experimental Characterization
,”
Int. J. Refrig.
,
34
, pp.
628
639
.10.1016/j.ijrefrig.2010.12.009
11.
Nielsen
,
K. K.
,
Bahl
,
C. R. H.
,
Smith
,
A.
,
Engelbrecht
,
K.
,
Olsen
,
U. L.
, and
Pryds
,
N.
,
2012
, “
The Influence of Non-Magnetocaloric Properties on the AMR Performance
,”
Proceedings of 5th International Conference on Magnetic Refrigeration at Room Temperature
.
12.
Engelbrecht
,
K.
,
2008
, “
A Numerical Model of an Active Magnetic Regenerator Refrigerator With Experimental Validation
,” Ph.D. thesis, University of Wisconsin-Madison, Madison, WI.
13.
Nielsen
,
K. K.
,
Bahl
,
C. R. H.
,
Smith
,
A.
,
Bjørk
,
R.
,
Pryds
,
N.
, and
Hattel
,
J.
,
2009
, “
Detailed Numerical Modeling of a Linear Parallel-Plate Active Magnetic Regenerator
,”
Int. J. Refrig.
,
32
, pp.
1478
1486
.10.1016/j.ijrefrig.2009.03.003
14.
Tusek
,
J.
,
Kitanovski
,
A.
,
Prebil
,
I.
, and
Poredos
,
A.
,
2011
, “
Dynamic Operation of an Active Magnetic Regenerator (AMR): Numerical Optimization of a Packed-Bed AMR
,”
Int. J. Refrig.
,
34
, pp.
1507
1517
.10.1016/j.ijrefrig.2011.04.007
15.
Oliveira
,
P. A.
,
Trevizoli
,
P. V.
,
Barbosa
, Jr.,
J. R.
, and
Prata
,
A. T.
,
2012
, “
A 2D Hybrid Model of the Fluid Flow and Heat Transfer in a Reciprocating Active Magnetic Regenerator
Int. J. Refrig.
,
35
, pp.
98
114
.10.1016/j.ijrefrig.2011.08.009
16.
Nielsen
,
K. K.
,
Tusek
,
J.
,
Engelbrecht
,
K.
,
Schopfer
,
S.
,
Kitanovski
,
A.
,
Bahl
,
C. R. H.
,
Smith
,
A.
,
Pryds
,
N.
, and
Poredos
,
A.
,
2011
, “
Review on Numerical Modeling of Active Magnetic Regenerators for Room Temperature Applications
,”
Int. J. Refrig.
,
34
, pp.
603
616
.10.1016/j.ijrefrig.2010.12.026
17.
Arnold
,
D. S.
,
Tura
,
A.
,
Ruebsaat-Trott
,
A.
, and
Rowe
,
A.
,
2012
, “
Design Improvements of a Permanent Magnet Active Magnetic Refrigerator
,”
Proceedings of 5th International Conference on Magnetic Refrigeration at Room Temperature
.
18.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
2nd ed.
,
Springer
,
New York
.
19.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
,
3rd ed.
,
Springer
,
New York
.
20.
Zhao
,
T.
, and
Cheng
,
P.
,
1996
, “
Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow
,”
ASME J. Heat Transfer
,
118
, pp.
592
598
.10.1115/1.2822673
21.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1998
, “
Heat Transfer in Oscillatory Flows
,”
Ann. Rev. Heat Transfer
, Begell House.
22.
Bahl
,
C. R. H.
, and
Nielsen
,
K. K.
,
2009
, “
The Effect of Demagnetization on the Magnetocaloric Properties of Gadolinium
,”
J. Appl. Phys.
,
105
, p.
013916
.10.1063/1.3056220
23.
Nielsen
,
K. K.
,
Bahl
,
C. R. H.
, and
Smith
,
A.
,
2010
, “
Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials
,”
Phys. Rev. B
,
81
, p.
054423
.10.1103/PhysRevB.81.054423
24.
Trevizoli
,
P. V.
,
Barbosa
, Jr.,
J. R.
,
de Oliveira
,
P. A.
,
Canesin
,
F. C.
, and
Ferreira
,
R. T. S.
,
2012
, “
Assessment of Demagnetization Phenomena in the Performance of an Active Magnetic Regenerator
,”
Int. J. Refrig.
,
35
, pp.
1043
1054
.10.1016/j.ijrefrig.2012.02.003
25.
Morrish
,
A.
,
1965
,
The Physical Principles of Magnetism
,
John Wiley & Sons, Inc.
,
New York
.
26.
Dinesen
,
A. R.
,
2004
, “
Magnetocaloric and Magnetoresistive Properties of La0.67Ca0.33−xSrxMnO3
,” Ph.D. thesis, Technical University of Denmark, Roskilde, Denmark.
27.
Pecharsky
,
V. K.
, and
Gschneidner
, Jr.,
K. A.
,
1999
, “
Magnetocaloric Effect and Magnetic Refrigeration
,”
J. Magn. Magn. Mater.
,
200
, pp.
44
56
.10.1016/S0304-8853(99)00397-2
28.
Pecharsky
,
V. K.
,
Gschneidner
, Jr.,
K. A.
,
Pecharsky
,
A. O.
, and
Tishin
,
A. M.
,
2001
, “
Thermodynamics of the Magnetocaloric Effect
,”
Phys. Rev. B
,
64
, p.
144406
.10.1103/PhysRevB.64.144406
29.
Petersen
,
T. F.
,
Pryds
,
N.
,
Smith
,
A.
,
Hattel
,
J.
,
Schmidt
,
H.
, and
Knudsen
,
H. J. H.
,
2008
, “
Two-Dimensional Mathematical Model of a Reciprocating Room-Temperature Active Magnetic Regenerator
,”
Int. J. Refrig.
,
31
, pp.
432
443
.10.1016/j.ijrefrig.2007.07.009
30.
Siddikov
,
B. M.
,
Wade
,
B. A.
, and
Schultz
,
D. H.
,
2005
, “
Numerical Simulation of the Active Magnetic Regenerator
,”
Comput. Math. Appl.
,
49
, pp.
1525
1538
.10.1016/j.camwa.2004.07.026
31.
Bahl
,
C. R. H.
,
Petersen
,
T. F.
,
Pryds
,
N.
, and
Smith
,
A.
,
2008
, “
A Versatile Magnetic Refrigeration Test Device
,”
Rev. Sci. Instrum.
,
79
, p.
093906
.10.1063/1.2981692
32.
Smith
,
A.
,
Nielsen
,
K. K.
,
Christensen
,
D. V.
,
Bahl
,
C. R. H.
,
Bjørk
,
R.
, and
Hattel
,
J.
,
2010
, “
The Demagnetizing Field of a Nonuniform Rectangular Prism
,”
J. Appl. Phys.
,
107
, p.
103910
.10.1063/1.3385387
33.
Trevizoli
,
P. V.
,
Barbosa
, Jr.,
J. R.
,
Tura
,
A.
,
Arnold
,
D.
, and
Rowe
,
A.
,
2013
. “
Modeling of Thermo-Magnetic Phenomena in Active Magnetic Regenerators
,”
Proceedings of ASME 2013 Summer Heat Transfer Conference
.
34.
Coey
,
J. M. D.
,
2010
,
Magnetism and Magnetic Materials
,
Cambridge University
,
New York
.
35.
Sato
,
M.
, and
Ishii
,
Y.
,
1989
, “
Simple and Approximate Expressions of Demagnetizing Factors of Uniformly Magnetized Rectangular Rod and Cylinder
,”
J. Appl. Phys.
,
66
, pp.
983
985
.10.1063/1.343481
36.
Aharoni
,
A.
,
1998
, “
Demagnetizing Factors for Rectangular Ferromagnetic Prisms
,”
J. Appl. Phys.
,
83
, pp.
3432
3434
.10.1063/1.367113
37.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
38.
Maliska
,
C. R.
,
2004
,
Transferencia de Calor e Mecanica dos Fluidos Computacional
,
2nd ed.
,
LTC
,
Rio de Janeiro, Brazil
.
You do not currently have access to this content.