This paper reports an experimental investigation of dynamic response of nonpremixed atmospheric swirling flames subjected to external, longitudinal acoustic excitation. Acoustic perturbations of varying frequencies (fp = 0–315 Hz) and velocity amplitudes (0.03 ≤ u′/Uavg ≤ 0.30) are imposed on the flames with various swirl intensities (S = 0.09 and 0.34). Flame dynamics at these swirl levels are studied for both constant and time-dependent fuel flow rate configurations. Heat release rates are quantified using a photomultiplier (PMT) and simultaneously imaged with a phase-locked CCD camera. The PMT and CCD camera are fitted with 430 nm ±10 nm band pass filters for CH* chemiluminescence intensity measurements. Flame transfer functions and continuous wavelet transforms (CWT) of heat release rate oscillations are used in order to understand the flame response at various burner swirl intensity and fuel flow rate settings. In addition, the natural modes of mixing and reaction processes are examined using the magnitude squared coherence analysis between major flame dynamics parameters. A low-pass filter characteristic is obtained with highly responsive flames below forcing frequencies of 200 Hz while the most significant flame response is observed at 105 Hz forcing mode. High strain rates induced in the flame sheet are observed to cause periodic extinction at localized regions of the flame sheet. Low swirl flames at lean fuel flow rates exhibit significant localized extinction and re-ignition of the flame sheet in the absence of acoustic forcing. However, pulsed flames exhibit increased resistance to straining due to the constrained inner recirculation zones (IRZ) resulting from acoustic perturbations that are transmitted by the co-flowing air. Wavelet spectra also show prominence of low frequency heat release rate oscillations for leaner (C2) flame configurations. For the time-dependent fuel flow rate flames, higher un-mixedness levels at lower swirl intensity is observed to induce periodic re-ignition as the flame approaches extinction. Increased swirl is observed to extend the time-to-extinction for both pulsed and unpulsed flame configurations under time-dependent fuel flow rate conditions.

References

References
1.
Kulsheimer
,
C.
, and
Buchner
,
H.
,
2002
, “
Combustion Dynamics of Turbulent Swirling Flames
,“
Combust. Flame
,
13
, pp.
70
–84.10.1016/S0010-2180(02)00394-2
2.
Huang
,
Y.
, and
Yang
,
V.
,
2004
, “
Bifurcation of Flame Structure in a Lean Premixed Swirl Stabilized Combustor: Transition From Stable to Unstable Flame
,”
Combust. Flame
,
136
, pp.
383
389
.10.1016/j.combustflame.2003.10.006
3.
Chan
,
C. K.
,
Lau
,
K. S.
, and
Chin
,
K.
,
1992
, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
24th International Symposium on Combustion/The Combustion Institute
, pp.
511
518
.
4.
Chaparro
,
A.
,
Landry
,
E.
, and
Cetegen
,
B. M.
,
2006
, “
Transfer Function Characteristics of Bluff-Body Stabilized Conical V-Shaped Premixed Turbulent Propane-Air Flames
,”
Combust. Flame
,
145
, pp.
290
299
.10.1016/j.combustflame.2005.10.013
5.
Chaudhuri
,
S.
, and
Cetegen
,
B. M.
,
2008
, “
Blowoff Characteristics of Bluff-Body Stabilized Conical Premixed Flames With Upstream Spatial Mixture Gradients
,”
Combust. Flame
,
153
, pp.
616
633
.10.1016/j.combustflame.2007.12.008
6.
Chaudhuri
,
S.
, and
Cetegen
,
B. M.
,
2009
, “
Response Dynamics of Bluff-Body Stabilized Conical Premixed Turbulent Flames With Spatial Mixture Gradients
,”
Combust. Flame
,
156
, pp.
706
720
.10.1016/j.combustflame.2008.12.002
7.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ration Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
27th International Symposium on Combustion/The Combustion Institute
, pp.
1809
1816
.
8.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
9.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2005
, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
,
30
, pp.
1717
1724
.10.1016/j.proci.2004.08.067
10.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
, pp.
1391
1398
.10.1016/j.proci.2008.06.204
11.
Bellows
,
B. D.
,
Neumeier
,
Y.
, and
Lieuwen
,
T.
,
2006
, “
Forced Response of a Swirling Premixed Flames to Flow Disturbances
,”
J. Propul. Power
,
22
(
5
), pp.
1075
1084
.10.2514/1.17426
12.
Gotoda
,
H.
,
Asano
,
Y.
,
Chuah
,
K. H.
, and
Kushida
,
G.
,
2009
, “
Nonlinear Analysis on Dynamics Behavior of Buoyancy-Induced Flame Oscillation Under Swirling Flow
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5423
5432
.10.1016/j.ijheatmasstransfer.2009.06.035
13.
Bakic
,
V.
,
Nemoda
,
S.
,
Sijercic
,
M.
,
Turanjanin
,
V.
, and
Stankovic
,
B.
,
2006
, “
Experimental and Numerical Investigation of Premixed Acetylene Flame
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4023
4032
.10.1016/j.ijheatmasstransfer.2006.04.008
14.
Fritsche
,
D.
,
Furi
,
M.
, and
Boulouchos
,
K.
,
2007
, “
An Experimental Investigation of Thermoacoustic Instabilities in a Premixed Swirl-Stabilized Flame
,”
Combust. Flame
,
151
, pp.
29
36
.10.1016/j.combustflame.2007.05.012
15.
Renard
,
P. H.
,
Thevenin
,
D.
,
Rolon
,
J. C.
, and
Candel
,
S.
,
2000
, “
Dynamics of Flame Vortex Interactions
,”
Prog. Energy Combust. Sci.
,
26
, pp.
225
282
.10.1016/S0360-1285(00)00002-2
16.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
, pp.
487
510
.10.1016/0010-2180(96)00049-1
17.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
, pp.
21
34
.10.1016/S0010-2180(03)00042-7
18.
Kang
,
S.
,
Kim
,
H.
,
Lee
,
J.
, and
Kim
,
Y.
,
2008
, “
Stabilization and Combustion Processes of Turbulent Premixed Lifted Methane-Air flames on Low-Swirl Burner
,”
Energy Fuels
,
22
, pp.
925
934
.10.1021/ef700458u
19.
Tachibana
,
S.
,
Yamashita
,
J.
,
Zimmer
,
L.
,
Suzuki
,
K.
, and
Hayashi
,
A. K.
,
2009
, “
Dynamic Behavior of a Freely Propagating Turbulent Premixed Flame Under Global Stretch-Rate Oscillations
,”
Proc. Combust. Inst.
,
32
, pp.
1795
1802
.10.1016/j.proci.2008.06.206
20.
Nair
,
S.
, and
Lieuwen
,
T.
,
2005
, “
Acoustic Detection of Blowout in Premixed Flames
,”
J. Propul. Power
,
21
(
1
), pp.
32
39
.10.2514/1.5658
21.
Ayoola
,
B. O.
,
Balachandran
,
R.
,
Frank
,
J. H.
,
Mastorakos
,
E.
, and
Kaminski
,
C. F.
,
2006
, “
Spatially Resolved Heat Release Rate Measurements in Turbulent Premixed Flames
,“
Combust. Flame
,
144
, pp.
1
16
.10.1016/j.combustflame.2005.06.005
22.
Cho
,
J.-H.
, and
Lieuwen
,
T.
,
2005
, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
,
140
, pp.
116
129
.10.1016/j.combustflame.2004.10.008
23.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Self-Induced Combustion Oscillations of Laminar Premixed Flames Stabilized on Annular Burners
,”
Combust. Flame
,
135
, pp.
525
537
.10.1016/j.combustflame.2003.08.007
24.
Lawn
,
C. J.
,
Evesque
,
S.
, and
Polifke
,
W.
,
2004
, “
A Model for the Thermoacoustic Response of a Premixed Swirl Burner. Part I: Acoustic Aspects
,”
Combust. Sci. Technol.
,
176
, pp.
1331
1358
.10.1080/00102200490461605
25.
Ribeiro
,
M. M.
, and
Whitelaw
,
J. H.
,
1980
, “
Coaxial Jets With and Without Swirl
,”
J. Fluid Mech.
,
96
(
4
), pp.
769
795
.10.1017/S0022112080002352
26.
Idahosa
,
U.
,
Saha
,
A.
,
Xu
,
C.
, and
Basu
,
S.
,
2010
, “
Non-Premixed Acoustically Perturbed Swirling Flame Dynamics
,”
Combust. Flame
,
157
, pp.
1800
1814
.10.1016/j.combustflame.2010.05.008
27.
Poinsot
,
T.
,
Nicoud
,
F.
, and
Giauque
,
A.
,
2008
, “
Validation of a Flame Transfer Function Reconstruction Method for Complex Turbulent Configurations
,”
Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference
, Vancouver, BC, Canada, pp.
2040
2077
.
28.
Lehr
,
A.
, and
Boles
,
A.
,
2004
, “
Experimental Investigation of the Periodic Unsteady Transonic Flow Field Around a Compressor Blade by Means of Particle Image Velocimetry (PIV)
,”
Int. J. Rotating Mach.
,
10
(
5
), pp.
401
413
10.1155/S1023621X04000405.
29.
Polifke
,
W.
, and
Lawn
,
C.
,
2007
, “
On the Low Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
, pp.
437
451
.10.1016/j.combustflame.2007.07.005
30.
Misiti
,
M.
,
Misiti
,
Oppenheim
,
G.
, and
Poggi
,
J. M.
,
2009
, “
Wavelet Toolbox 4
,”
Matlab Users Guide
,
Mathworks
.
31.
MATLAB Signal Processing Toolbox 6 Users Guide
, Mathworks
2009
, Mathworks, Natick, MA.
You do not currently have access to this content.