The transient critical heat fluxes (transient CHFs) in SUS304-circular tubes with various twisted-tape inserts are systematically measured for mass velocities (G = 3988–13,620 kg/m2s), inlet liquid temperatures (Tin = 287.55–313.14 K), outlet pressures (Pout = 805.11–870.23 kPa) and exponentially increasing heat inputs (Q = Q0 exp(t/τ), exponential periods, τ, of 28.39 ms to 8.43 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304-circular tube of inner diameter (d = 6 mm), heated length (L = 59.4 mm), effective length (Leff = 49.4 mm), L/d (=9.9), Leff/d (=8.23), and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.89 μm) is used in this work. The SUS304 twisted-tapes with twist ratios, y [H/d = (pitch of 180 deg rotation)/d], of 2.40 and 4.45 are used. The transient critical heat fluxes for SUS304-circular tubes with the twisted-tapes of y = 2.40 and 4.45 are compared with authors' transient CHF data for the empty SUS304-circular tube and a SUS304-circular tube with the twisted-tape of y = 3.37, and the values calculated by authors' transient CHF correlations for the empty circular tube and the circular tube with twisted-tape insert. The influences of heating rate, twist ratio and swirl velocity on the transient CHF are investigated into details and the widely and precisely predictable correlations of the transient CHF against inlet and outlet subcoolings for the circular tubes with various twisted-tape inserts are given based on the experimental data. The correlations can describe the transient CHFs for SUS304-circular tubes with various twisted-tapes of twist ratios (y = 2.40, 3.37, and 4.45) in the wide experimental ranges of exponential periods (τ = 28.39 ms to 8.43 s) and swirl velocities (usw = 5.04–20.72 m/s) obtained in this work within −26.19% to 14.03% difference. The mechanism of the subcooled flow boiling critical heat flux in a circular tube with twisted-tape insert is discussed.

References

References
1.
Gambill
,
W. R.
,
Bundy
,
R. D.
, and
Wansbrough
,
R. W.
,
1961
, “
Heat Transfer, Burnout, and Pressure Drop for Water in Swirl Flow Tubes With Internal Twisted Tapes
,”
Chem. Eng. Prog. Symp. Ser.
,
57
(
32
), pp.
127
137
.
2.
Blatt
,
T. A.
, and
Adt
,
R. R.
,
1963
, “
The Effects of Twisted Tape Swirl Generators on the Heat Transfer Rate and Pressure Drop of Boiling Freon 11 and Water
,” Paper No. ASME-63-WA-42.
3.
Lopina
,
R. F.
, and
Bergles
,
A. E.
,
1973
, “
Subcooled Boiling of Water in Tape Generated Swirl Flow
,”
ASME J. Heat Transfer
,
95
, pp.
281
283
.10.1115/1.3450049
4.
Celata
,
G. P.
,
1993
, “
Recent Achievements in the Thermal Hydraulics of High Heat Flux Components in Fusion Reactors
,”
Exp. Therm. Fluid Sci.
,
7
, pp.
263
278
.10.1016/0894-1777(93)90050-S
5.
Tong
,
W.
,
Bergles
,
A. E.
, and
Jensen
,
M. K.
,
1996
, “
Critical Heat Flux and Pressure Drop of Subcooled Flow Boiling in Small-Diameter Tubes With Twisted-Tape Inserts
,”
J. Enhanced Heat Transfer
,
3
(
2
), pp.
95
108
.
6.
Kabata
,
Y.
,
Nakajima
,
R.
, and
Shioda
,
K.
,
1996
, “
Enhancement of Critical Heat Flux for Subcooled Flow Boiling of Water in Tubes With a Twisted Tape and With a Helically Coiled Wire
,”
Proceedings of the ASME-JSME 4th International Conference on Nuclear Engineering
, Book No. I389A2-1996, pp.
639
646
.
7.
Inasaka
,
F.
, and
Nariai
,
H.
,
1996
, “
Evaluation of Subcooled Critical Heat Flux Correlations for Tubes With and Without Internal Twisted Tapes
,”
Nucl. Eng. Des.
,
163
, pp.
225
239
.10.1016/0029-5493(95)01170-6
8.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2002
, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Advances in Heat Transfer
, Vol.
36
,
Academic Press
,
New York
, pp.
183
266
.
9.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook
,
John Wiley & Sons
,
New York
, p.
1029
.
10.
Hata
,
K.
, and
Masuzaki
,
S.
,
2011
, “
Subcooled Water Flow Boiling Heat Transfer in a Short SUS304-Tube With Twisted-Tape Insert
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
052906
.10.1115/1.4002405
11.
Hata
,
K.
, and
Masuzaki
,
S.
,
2011
, “
Heat Transfer and Critical Heat Flux of Subcooled Water Flow Boiling in a SUS304-Tube With Twisted-Tape Insert
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
, p.
012001
.10.1115/1.4003609
12.
Hata
,
K.
, and
Masuzaki
,
S.
,
2011
, “
Twisted-Tape-Induced Swirl Flow Heat Transfer and Pressure Drop in a Short Circular Tube Under Velocities Controlled
,”
Nucl. Eng. Des.
,
241
, pp.
4434
4444
.10.1016/j.nucengdes.2010.09.023
13.
Hata
,
K.
,
Shirai
,
Y.
, and
Masuzaki
,
S.
,
2012
, “
Transient Critical Heat Fluxes of Subcooled Water Flow Boiling in a Short SUS304-Tube With Twisted-Tape Insert
,”
Proceedings of the 20th International Conference on Nuclear Engineering and ASME 2012 Power Conference ICONE20POWER2012
, July 30—Aug. 3, 2012, Anaheim, CA, Paper No. ICONE20POWER2012-54212, pp.
1
13
.
14.
Hata
,
K.
,
Shirai
,
Y.
, and
Masuzaki
,
S.
,
2013
, “
Transient Critical Heat Fluxes of Subcooled Water Flow Boiling in a SUS304-CIRCULAR Tube With Twisted-Tape Insert
,”
J. Power Energy Systems
,
7
(
2
), pp.
122
137
.10.1299/jpes.7.122
15.
Hata
,
K.
,
Shiotsu
,
M.
, and
Noda
,
N.
,
2006
, “
Influence of Heating Rate on Subcooled Flow Boiling Critical Heat Flux in a Short Vertical Tube
,”
JSME Int. J., Ser. B
,
49
(
2
), pp.
309
317
.10.1299/jsmeb.49.309
16.
Hata
,
K.
, and
Noda
,
N.
,
2008
, “
Transient Critical Heat Fluxes of Subcooled Water Flow Boiling in a Short Vertical Tube Caused by Exponentially Increasing Heat Inputs
,”
ASME J. Heat Transfer, Ser. C
,
130
, p.
054503
.10.1115/1.2887850
17.
Hata
,
K.
, and
Masuzaki
,
S.
,
2010
, “
Influence of Heat Input Waveform on Transient Critical Heat Flux of Subcooled Water Flow Boiling in a Short Vertical Tube
,”
Nucl. Eng. Des.
,
240
, pp.
440
452
.10.1016/j.nucengdes.2008.12.001
18.
Spalding
,
D. B.
,
1991
,
The PHOENICS Beginner's Guide
,
CHAM Ltd.
,
London
.
19.
Brodkey
,
R. S.
, and
Hershey
,
H. C.
,
1988
,
Transport Phenomena
,
McGraw-Hill
,
New York
, p.
568
.
20.
Hata
,
K.
, and
Masuzaki
,
S.
,
2010
, “
Critical Heat Fluxes of Subcooled Water Flow Boiling in a Short Vertical Tube at High Liquid Reynolds Number
,”
Nucl. Eng. Des.
,
240
, pp.
3145
3157
.10.1016/j.nucengdes.2010.05.035
21.
Hata
,
K.
,
Kai
,
N.
,
Shirai
,
Y.
, and
Masuzaki
,
S.
,
2011
, “
Transient Turbulent Heat Transfer for Heating of Water in a Short Vertical Tube
,”
J. Power Energy Syst.
,
5
(
3
), pp.
414
428
.10.1299/jpes.5.414
22.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
,
1964
, “
The Determination of Forced-Convection Surface-Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
86
, pp.
365
372
.10.1115/1.3688697
23.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
, pp.
969
976
.
24.
Cole
,
C.
,
1979
,
Homogeneous and Heterogeneous Nucleation in Boiling Phenomena
, Vol.
1
,
S.
van Stralen
, and
Cole
,
R.
eds.,
Hemisphere Pub. Corp.
,
New York
, p.
71
.
25.
Lienhard
,
J. H.
,
1976
, “
Correlation of Limiting Liquid Superheat
,”
Chem. Eng. Sci.
,
31
, pp.
847
849
.10.1016/0009-2509(76)80063-2
You do not currently have access to this content.