High concentration photovoltaic devices require effective heat rejection to keep the solar cells within a suitable temperature range and to achieve acceptable system efficiencies. Various techniques have been developed to achieve these goals. For example, nanofluids as coolants have remarkable heat transfer characteristics with broad applications; but, little is known of its performance for concentration photovoltaic cooling. Generally, a cooling system should be designed to keep the system within a tolerable temperature range, to minimize energy waste, and to maximize system efficiency. In this paper, the thermal performance of an Al2O3-water cooling system for densely packed photovoltaic cells under high concentration has been computationally investigated. The model features a representative 2D cooling channel with photovoltaic cells, subject to heat conduction and turbulent nanofluid convection. Considering a semi-empirical nanofluid model for the thermal conductivity, the influence of different system design and operational parameters, including required pumping power, on cooling performance and improved system efficiency has been evaluated. Specifically, the varied system parameters include the nanoparticle volume fraction, the inlet Reynolds number, the inlet nanofluid temperature, and different channel heights. Optimal parameter values were found based on minimizing the system's entropy generation. Considering a typical 200-sun concentration, the best performance can be achieved with a channel of 10 mm height and an inlet Reynolds number of around 30,000, yielding a modest system efficiency of 20%. However, higher nanoparticle volume fractions and lower nanofluid inlet temperatures further improve the cell efficiency. For a more complete solar energy use, a combined concentration photovoltaic and thermal heating system are suggested.

References

References
1.
Pearce
,
J. M.
,
2002
, “
Photovoltaics—A Path to Sustainable Futures
,”
Futures
,
34
(
7
), pp.
663
674
.10.1016/S0016-3287(02)00008-3
2.
Chow
,
T. T.
,
2010
, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
(
2
), pp.
365
379
.10.1016/j.apenergy.2009.06.037
3.
Sala
,
G.
,
1989
, “
Cooling of Solar Cells
,”
Solar Cells and Optics for Photovoltaic Concentration
,
A.
Luque
and
G. L.
Araújo
, eds.,
Adam Hilger- IOP Publishing
,
Bristol, UK
, pp.
239
267
.
4.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
,
2005
, “
Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review
,”
Sol. Energy Mater. Sol. C.
,
86
(
4
), pp.
451
483
.10.1016/j.solmat.2004.09.003
5.
Du
,
B.
,
Hu
,
E.
, and
Kolhe
,
M.
,
2012
, “
Performance Analysis of Water Cooled Concentrated Photovoltaic (CPV) System
,”
Renew. Sust. Energ. Rev.
,
16
(
9
), pp.
6732
6736
.10.1016/j.rser.2012.09.007
6.
Barrau
,
J.
,
Rosell
,
J.
,
Chemisana
,
D.
,
Tadrist
,
L.
, and
Ibañez
,
M.
,
2011
, “
Effect of a Hybrid Jet Impingement/Micro-Channel Cooling Device on the Performance of Densely Packed PV Cells Under High Concentration
,”
Sol. Energy
,
85
(
11
), pp.
2655
2665
.10.1016/j.solener.2011.08.004
7.
Ho
,
T.
,
Mao
,
S. S.
, and
Greif
,
R.
,
2010
, “
Improving Efficiency of High-Concentrator Photovoltaics by Cooling With Two-Phase Forced Convection
,”
Int. J. Energ. Res.
,
34
(
14
), pp.
1257
1271
.
8.
Zhu
,
L.
,
Boehm
,
R. F.
,
Wang
,
Y.
,
Halford
,
C.
, and
Sun
,
Y.
,
2011
, “
Water Immersion Cooling of PV Cells in a High Concentration System
,”
Sol. Energy Mater. Sol. C.
,
95
(
2
), pp.
538
545
.10.1016/j.solmat.2010.08.037
9.
Han
,
X.
,
Wang
,
Y.
, and
Zhu
,
L.
,
2013
, “
The Performance and Long-Term Stability of Silicon Concentrator Solar Cells Immersed in Dielectric Liquids
,”
Energ. Convers. Manage.
,
66
, pp.
189
198
.10.1016/j.enconman.2012.10.009
10.
Müller
,
M.
,
Escher
,
W.
,
Ghannam
,
R.
,
Goicochea
,
J.
,
Michel
,
B.
,
Ong
,
C. L.
, and
Paredes
,
S.
,
2011
, “
Ultra‐High‐Concentration Photovoltaic‐Thermal Systems Based on Microfluidic Chip‐Coolers
,”
AIP Conf. Proc.
,
1407
, pp.
231
234
.10.1063/1.3658333
11.
Micheli
,
L.
,
Sarmah
,
N.
,
Luo
,
X.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2013
, “
Opportunities and Challenges in Micro-and Nano-Technologies for Concentrating Photovoltaic Cooling: A Review
,”
Renew. Sust. Energ. Rev.
,
20
, pp.
595
610
.10.1016/j.rser.2012.11.051
12.
Kleinstreuer
,
C.
,
Li
,
J.
, and
Feng
,
Y.
,
2013
, “
Advances in Numerical Heat Transfer
,”
Nanoparticle Heat Transfer and Fluid Flow
, Vol.
4
,
W. J.
Minkowycz
, E. M. Sparrow, and J. P. Abraham, eds.,
CRC Press
,
Boca Raton, FL
.
13.
Mahian
,
O.
,
Kianifar
,
A.
,
Kalogirou
,
S. A.
,
Pop
,
I.
, and
Wongwises
,
S.
,
2013
, “
A Review of the Applications of Nanofluids in Solar Energy
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
582
594
.10.1016/j.ijheatmasstransfer.2012.10.037
14.
Elmir
,
M.
,
Mehdaoui
,
R.
, and
Mojtabi
,
A.
,
2012
, “
Numerical Simulation of Cooling a Solar Cell by Forced Convection in the Presence of a Nanofluid
,”
Energy Procedia
,
18
, pp.
594
603
.10.1016/j.egypro.2012.05.072
15.
Wasp
,
F. J.
,
1977
,
Solid-Liquid Slurry Pipeline Transportation
,
Trans. Tech
.,
Berlin
.
16.
Mahian
,
O.
,
Kianifar
,
A.
,
Kleinstreuer
,
C.
,
Al-Nimr
,
M. A.
,
Pop
,
I.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2013
, “
A Review of Entropy Generation in Nanofluid Flow
,”
Int. J. Heat Mass Transfer
,
65
, pp.
514
532
.10.1016/j.ijheatmasstransfer.2013.06.010
17.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e119
e123
.10.1016/j.cap.2008.12.047
18.
Namburu
,
P. K.
,
Das
,
D. K.
,
Tanguturi
,
K. M.
, and
Vajjha
,
R. S.
,
2009
, “
Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties
,”
Int. J. Thermal Sci.
,
48
(
2
), pp.
290
302
.10.1016/j.ijthermalsci.2008.01.001
19.
Demir
,
H.
,
Dalkilic
,
A. S.
,
Kürekci
,
N. A.
,
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2011
, “
Numerical Investigation on the Single Phase Forced Convection Heat Transfer Characteristics of TiO2 Nanofluids in a Double-Tube Counter Flow Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
218
228
.10.1016/j.icheatmasstransfer.2010.12.009
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
21.
Ge
,
S.
, and
Na
,
H.
,
1989
,
Thermal Radiation Properties and Its Measurement
,
Science Press
,
Beijing
, pp.
446
451
(in Chinese).
22.
Evans
,
D. L.
, and
Florschuetz
,
L. W.
,
1978
, “
Terrestrial Concentrating Photovoltaic Power System Studies
,”
Sol. Energy
,
20
(
1
), pp.
37
43
.10.1016/0038-092X(78)90139-1
23.
Skoplaki
,
E.
, and
Palyvos
,
J. A.
,
2009
, “
On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations
,”
Sol. Energy.
,
83
(
5
), pp.
614
624
.10.1016/j.solener.2008.10.008
24.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2010
, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122401
.10.1115/1.4002395
25.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (AlO) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
, p.
153107
.10.1063/1.2093936
26.
Feng
,
Y.
, and
Kleinstreuer
,
C.
,
2012
, “
Thermal Nanofluid Property Model With Application to Nanofluid Flow in a Parallel Disk System—Part II: Nanofluid Flow Between Parallel Disks
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051003
.10.1115/1.4005633
27.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
,
2004
,
Introduction to Fluid Mechanics
,
6th ed.
,
Wiley
,
New York
.
28.
Ratts
,
E. B.
, and
Raut
,
A. G.
,
2004
, “
Entropy Generation Minimization of Fully Developed Internal Flow With Constant Heat Flux
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
656
659
.10.1115/1.1777585
29.
Kleinstreuer
,
C.
,
2010
,
Modern Fluid Dynamics: Basic Theory and Selected Applications in Macro-and Micro-fluidics
,
Springer
,
New York
.
30.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization: the Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
, Chap. 3.
31.
Laufer
,
J.
,
1948
, “
Investigation of Turbulent Flow in a Two-Dimensional Channel
,” Ph.D. thesis, http://thesis.library.caltech.edu/3549/
32.
Lindgren
,
E. R.
,
1965
, “
Experimental Study on Turbulent Pipe Flows of Distilled Water
,” Report No. 1 AD621071, Civil Eng. Dept., Oklahoma State University, Stillwater, OK.
33.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
34.
Sparrow
,
E. M.
,
Hallman
,
T. M.
, and
Siegel
,
R.
,
1957
, “
Turbulent Heat Transfer in the Thermal Entrance Region of a Pipe With Uniform Heat Flux
,”
Appl. Sci. Res., Section A
,
7
(
1
), pp.
37
52
.
35.
Coventry
,
J. S.
,
2005
, “
Performance of a Concentrating Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
78
(
2
), pp.
211
222
.10.1016/j.solener.2004.03.014
37.
Tyagi
,
V. V.
,
Kaushik
,
S. C.
, and
Tyagi
,
S. K.
,
2012
, “
Advancement in Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Technology
,”
Renew. Sust. Energ. Rev.
,
16
, pp.
1383
1398
.10.1016/j.rser.2011.12.013
You do not currently have access to this content.