Ceramic microchannel heat-exchanger and reactor technology is capable of achieving high performance while operating under high-temperature, corrosive, and/or oxidative environments. This work describes two computational fluid dynamics (CFD) modeling studies which examine the coupling of heat transfer and endothermic methane-steam-reforming chemistry within a ceramic microchannel reactor. These modeling tools are then applied to improve microchannel-reactor design and performance. Within the reactor, methane is converted to syngas through steam reforming; the thermal requirements for this endothermic chemistry are provided by heat transfer from hot-inert gas on adjacent layers. Fluid flow, heat transfer, and complex elementary surface chemistry are all simulated using the ANSYS FLUENT models. CFD studies reveal the substantial chemical contribution of reforming on thermal gradients across and within the reactor. Improved control of the reforming temperature is also discovered through stack-design analysis, where an odd number of inert-gas layers are found to create more-uniform reactive wall temperatures. Model results provide insight on the interplay of conjugate heat transfer and chemical kinetics in reactor design.

References

References
1.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier Ltd.
,
Oxford, UK
.
2.
Anxionnaz
,
Z.
,
Cabassuid
,
M.
,
Gourdon
,
C.
, and
Tochon
,
P.
,
2008
, “
Heat Exchanger/Reactors (HEX Reactors): Concepts, Technologies: State-of-the-Art
,”
Chem. Eng. Process.
,
47
, pp.
2029
2050
.10.1016/j.cep.2008.06.012
3.
Thormann
,
J.
,
Pfeifer
,
P.
, and
Kunz
,
U.
,
2012
, “
Dynamic Performance of Hexadecane Steam Reforming in a Microstructured Reactor
,”
Chem. Eng. J.
,
191
, pp.
410
415
.10.1016/j.cej.2011.08.011
4.
Jensen
,
K. F.
,
1999
, “
Microchemical Systems: Status, Challenges, and Opportunities
,”
AIChE J.
,
45
(
10
), pp.
2051
2054
.10.1002/aic.690451003
5.
Strumpf
,
H. J.
, and
Muley
,
A.
,
2007
, “
Advanced Heat Exchangers for Use With Aircraft Engines
,”
18th International Society for Air Breathing Engines Conference Proceedings
.
6.
Khan
,
M. G.
, and
Fartaj
,
A.
,
2011
, “
A Review on Microchannel Heat Exchangers and Potential Applications
,”
Int. J. Energy Res.
,
35
(
7
), pp.
553
582
.10.1002/er.1720
7.
Foumeny
,
E.
, and
Heggs
,
P.
,
1991
,
Heat Exchange Engineering, Compact Heat Exchangers: Techniques of Size Reduction
, Vol.
2
,
Ellis Horwood
,
London
.
8.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons, Hoboken, NJ
.
9.
Luo
,
L.
,
Fan
,
Y.
, and
Tondeur
,
D.
,
2007
, “
Heat Exchanger: From Micro- to Multi-Scale Design Optimization
,”
Int. J. Energy Res.
,
31
(
13
), pp.
1266
1274
.10.1002/er.1298
10.
Kiwi-Minsker
,
L.
, and
Renken
,
A.
,
2005
, “
Microstructured Reactors for Catalytic Reactions
,”
Catal. Today
,
110
(
1-2
), pp.
2
14
.10.1016/j.cattod.2005.09.011
11.
Lewinsohn
,
C.
,
Wilson
,
M.
,
Fellows
,
J.
, and
Anderson
,
H.
,
Multiscale, Ceramic Microsystems for Heat and Mass Transfer
,
Ceramatec, Inc.
,
Salt Lake
City, UT.
12.
Knitter
,
R.
,
Gohring
,
D.
,
Risthaus
,
P.
, and
HauBelt
,
J.
,
2001
, “
Microfabrication of Ceramic Microreactors
,”
Microsyst. Technol.
,
7
, pp.
85
90
.10.1007/s005420100107
13.
Knitter
,
R.
,
Gohring
,
D.
,
Mechnich
,
P.
, and
Broucek
,
R.
,
2000
, “
Ceramic Microreactor for High-Temperature Reactions
,”
4th International Conference on Microreaction Technology
, pp.
455
460
.
14.
Knitter
,
R.
, and
Liauw
,
M. A.
,
2004
, “
Ceramic Microreactors for Heterogeneously Catalyzed Gas-Phase Reactions
,”
Lab Chip
,
4
, pp.
378
383
.10.1039/b403361b
15.
Sommers
,
A.
,
Wang
,
Q.
,
Han
,
X.
,
T'Joen
,
C.
,
Park
,
Y.
, and
Jacobi
,
A.
,
2010
, “
Ceramics and Ceramic Matrix Composites for Heat Exchangers in Advanced Thermal Systems—A Review
,”
Appl. Therm. Eng.
,
30
, pp.
1277
1291
.10.1016/j.applthermaleng.2010.02.018
16.
Murphy
,
D. M.
,
Manerbino
,
A.
,
Parker
,
M.
,
Blasi
,
J.
,
Kee
,
R. J.
, and
Sullivan
,
N. P.
,
2013
, “
Methane Steam Reforming in a Novel Ceramic Microchannel Reactor
,”
Int. J. Hydrogen Energy
,
38
, pp.
8741
8750
.10.1016/j.ijhydene.2013.05.014
17.
Kee
,
R. J.
,
Almand
,
B. B.
,
Blasi
,
J. M.
,
Rosen
,
B. L.
,
Hartmann
,
M.
,
Sullivan
,
N. P.
,
Zhu
,
H.
,
Manerbino
,
A. R.
,
Menzer
,
S.
,
Coors
,
W. G.
, and
Martin
,
J. L.
,
2011
, “
The Design, Fabrication, and Evaluation of a Ceramic Counter-Flow Microchannel Heat Exchanger
,”
Appl. Therm. Eng.
,
31
, pp.
2004
2012
.10.1016/j.applthermaleng.2011.03.009
18.
Kolb
,
G.
, and
Hessel
,
V.
,
2004
, “
Micro-Structured Reactors for Gas Phase Reactions
,”
Chem. Eng. J.
,
98
(
1-2
), pp.
1
38
.10.1016/j.cej.2003.10.005
19.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Bashir
,
M. H.
,
Khan
,
A. R.
,
Ahmad
,
K. N.
, and
Khan
,
S.
,
2012
, “
CFD Applications in Various Heat Exchangers Design: A Review
,”
Appl. Therm. Eng.
,
32
(
C
), pp.
1
12
.10.1016/j.applthermaleng.2011.09.001
20.
Zhai
,
X.
,
Ding
,
S.
,
Cheng
,
Y.
,
Jin
,
Y.
, and
Cheng
,
Y.
,
2010
, “
CFD Simulation With Detailed Chemistry of Steam Reforming of Methane for Hydrogen Production in an Integrated Micro-Reactor
,”
Int. J. Hydrogen Energy
,
35
, pp.
5383
5392
.10.1016/j.ijhydene.2010.03.034
21.
Arzamendi
,
G.
,
Diéguez
,
P.
,
Montes
,
M.
,
Odriozola
,
J.
,
Sousa-Aguiar
,
E. F.
, and
Gandia
,
L.
,
2009
, “
Methane Steam Reforming in a Microchannel Reactor for GTL Intensification: A Computation Fluid Dynamics Simulation Study
,”
Chem. Eng. J.
,
154
, pp.
168
173
.10.1016/j.cej.2009.01.035
22.
Arzamendi
,
G.
,
Uriz
,
I.
,
Navajas
,
A.
,
Diéguez
,
P. M.
,
Gandía
,
L. M.
,
Montes
,
M.
,
Centeno
,
M. A.
, and
Odriozola
,
J. A.
,
2012
, “
A CFD Study on the Effect of the Characteristic Dimension of Catalytic Wall Microreactors
,”
AIChE J.
,
58
, pp.
2785
2797
.10.1002/aic.12790
23.
Irani
,
M.
,
Alizadehdakhel
,
A.
,
Pour
,
A. N.
,
Hoseini
,
N.
, and
Adinehnia
,
M.
,
2011
, “
CFD Modeling of Hydrogen Production Using Steam Reforming of Methane in Monolith Reactors: Surface or Volume-Base Reaction Model?
,”
Int. J. Hydrogen Energy
,
36
(
24
), pp.
15602
15610
.10.1016/j.ijhydene.2011.09.030
24.
Karakaya
,
C.
, and
Deutschmann
,
O.
,
2013
, “
Kinetics of Hydrogen Oxidation on Rh/Al2O3 Catalysts Studied in a Stagnation-Flow Reactor
,”
Chem. Eng. Sci.
,
89
, pp.
171
184
.10.1016/j.ces.2012.11.004
25.
Karakaya
,
C.
,
2012
, “
A Novel, Hierarchically Developed Surface Kinetics for Oxidation and Reforming of Methane and Propane Over Rh/Al2O3
,”
Ph.D. thesis
,
Karlsruhe Institute of Technology
, Karlsruhe, Germany.
26.
ANSYS FLUENT software package version 14.0.
You do not currently have access to this content.