Portable energy storage will be a key challenge if electric vehicles (EVs) become a large part of our future transportation system. A big barrier to market uptake for EVs is driving range. Range can be further limited if heating and air conditioning systems are powered by the EV's batteries. The use of electricity for HVAC can be minimized if a thermal storage system, a “thermal battery,” can be substituted as the energy source to provide sufficient cabin heating and cooling. The aim of this project was to model, design, and fabricate a low-cost, modular thermal battery for EVs. The constructed thermal battery employs a phase change material erythritol (a sugar alcohol commonly used as artificial sweetener) as the storage medium sealed in an insulated, stainless steel container. At a total prototype cost of ∼$311/kW-h, the system is roughly half the price of lithium ion batteries. Heat exchange to the thermal battery is accomplished via water (or low viscosity engine oil), which is pumped through a helical winding of copper tubing. A computational fluid dynamics (CFD) model was used to determine the geometry (winding radius and number of coils) and flow conditions necessary to create adequate heat transfer. Testing of the fabricated design indicates that the prototype thermal battery module can store enough heat and discharge it fast enough to meet the demand of cruising passenger vehicle for up to 1 h on a cold day. The battery is capable of storing nearly 100 W-h/kg and can provide a specific power density of 30 W/kg. The storage density is competitive with lithium ion batteries, but work is needed to improve the power density.

References

References
1.
Trigg
,
T.
,
Telleen
,
P.
,
Boyd
,
R.
,
Cuenot
,
F.
,
D'Ambrosio
,
D.
,
Gaghen
,
R.
,
Gagné
,
J.-F.
,
Hardcastle
,
A.
,
Houssin
,
D.
,
Jones
,
A. R.
,
Kaneko
,
H.
,
Lott
,
M. C.
,
Spong
,
L.
,
Sullivan
,
K.
,
Tam
,
C.
, and
Wråke
,
M.
,
2013
, “
Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020
,” (April), pp.
1
41
.
2.
Yokoyama
,
A.
,
Osaka
,
T.
, and
Imanishi
,
Y.
,
2011
, “
Thermal Management System for Electric Vehicles
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
1277
1285
.
3.
Umezu
,
K.
, and
Noyama
,
H.
,
2010
, “
Air-Conditioning System For Electric Vehicles
,” SAE Automotive Refrigeration System Efficiency Symposium 2010, pp.
1
20
.
4.
BioAge Group
,
2008
, “
Green Car Congress: The Battery Pack for Mitsubishis i-MiEV
,” Green Car Congr.
5.
Gaines
,
L.
, and
Cuenca
,
R.
,
2000
, “
Costs of Lithium-Ion Batteries for Vehicles
,” Argonne National Labs, Report No. ANL/ESD-42. Available at: http://ntl.bts.gov/lib/14000/14700/14729/DE00761281.pdf.
6.
Aceves
,
S. M.
, and
Smith
,
J. R.
,
1996
, “
A Desiccant Dehumidifier for Electric Vehicle Heating
,” pp.
1
30
.
7.
Menzie
,
B. W. D.
,
Soto-viruet
,
Y.
,
Bermúdez-lugo
,
O.
,
Mobbs
,
P. M.
,
Perez
,
A. A.
,
Taib
,
M.
,
Wacaster
,
S.
,
Jewell
,
S.
, and
Survey
,
U. S. G.
,
2013
, “
Review of Selected Global Mineral Industries in 2011 and an Outlook to 2017
,” Reston, VA.
8.
Wakihara
,
M.
,
2001
, “
Recent Developments in Lithium Ion Batteries
,”
Mater. Sci. Eng.
,
R33
, pp.
109
134
.
9.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
10.
Zalba
,
B.
,
Cabeza
,
L. F.
,
Mehling
,
H.
, and
Marin
,
J.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
11.
Abhat
A.
,
1983
, “
Low Temperature Latent Heat Thermal Storage: Heat Storage Materials
,”
Sol. Energy
,
10
(
4
), pp.
313
332
.10.1016/0038-092X(83)90186-X
12.
Boerema
,
N.
,
Morrison
,
G.
,
Taylor
,
R. A.
, and
Rosengarten
,
G.
,
2012
, “
Liquid Sodium Versus Hitec as a Heat Transfer Fluid in Solar Thermal Central Receiver Systems
,”
Sol. Energy
,
86
(
9
), pp.
2293
2305
.10.1016/j.solener.2012.05.001
13.
Grenby
,
T. H.
,
1996
,
Advances In Sweeteners, Blackie Academic & Professional
,
Chapman & Hill
,
London
.
14.
Kaizawa
,
A.
,
Maruoka
,
N.
,
Kawai
,
A.
,
Kamano
,
H.
,
Jozuka
,
T.
,
Senda
,
T.
, and
Akiyama
,
T.
,
2007
, “
Thermophysical and Heat Transfer Properties of Phase Change Material Candidate for Waste Heat Transportation System
,”
Heat Mass Transfer
,
44
(
7
), pp.
763
769
.10.1007/s00231-007-0311-2
15.
Agyenim
,
F.
,
Eames
,
P.
, and
Smyth
,
M.
,
2011
, “
Experimental Study on the Melting and Solidification Behaviour of a Medium Temperature Phase Change Storage Material (Erythritol) System Augmented With Fins to Power a LiBr/H2O Absorption Cooling System
,”
Renewable Energy
,
36
(
1
), pp.
108
117
.10.1016/j.renene.2010.06.005
16.
Shukla
,
A.
,
Buddhi
,
D.
, and
Sawhney
,
R. L.
,
2008
, “
Thermal Cycling Test of Few Selected Inorganic and Organic Phase Change Materials
,”
Renewable Energy
,
33
(
12
), pp.
2606
2614
.10.1016/j.renene.2008.02.026
17.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
2007
, “
Fully Developed Laminar Convection From a Helical Coil
,”
Chem. Eng. Commun.
,
9
(
1981
), pp.
185
200
.10.1080/00986448108911023
18.
Janssen
,
L. A. M.
, and
Hoogendoorn
,
C. J.
,
1978
, “
Laminar Convective Heat Transfer in Helical Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
9
), pp.
1197
1206
.10.1016/0017-9310(78)90138-2
19.
Çengel
,
Y. A.
, and
Ghajar
,
A.
,
2010
,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
20.
Kumana
,
J.
, and
Kothari
,
S.
,
1982
, “
Predict Storage-Tank Heat Transfer Precisely
,”
Chem. Eng.
,
89
(
6
), pp.
127
132
.
21.
Abedin
,
A. H.
, and
Rosen
,
M. A.
,
2011
, “
A Critical Review of Thermochemical Energy Storage Systems
,”
Open Renewable Energy J.
,
4
, pp.
42
46
. Available at: http://benthamscience.com/open/torej/articles/V004/42TOREJ.pdf.
22.
Farid
,
M. M.
,
Hamad
,
F. A.
, and
Abu-Arabi
,
M.
,
1998
, “
Melting and Solidification in Multi-Dimensional Geometry and Presence of More Than One Interface
,”
Energy Convers. Manage.
,
39
(
8
), pp.
809
818
.10.1016/S0196-8904(97)00038-1
23.
Vlahinos
,
A.
, and
Pesaran
,
A. A.
,
2002
, “
Energy Efficient Battery Heating in Cold Climates
,” NREL Report No. 2002-01-1975.
24.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Prasher
,
R. S.
, and
Phelan
,
B. E.
,
2012
, “
Socioeconomic Impacts of Heat Transfer Research
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1467
1473
.10.1016/j.icheatmasstransfer.2012.09.007
25.
Flynn
,
P.
,
2004
, Committee of Soldier Power/Energy Systems N. R. C., Meeting the Energy Needs of Future Warriors, The National Academic Press, Washington, DC.
26.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.10.1016/j.ijheatmasstransfer.2005.12.012
27.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part II: Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2762
2770
.10.1016/j.ijheatmasstransfer.2005.12.014
28.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
29.
Wang
,
L. W.
,
Tamainot-Telto
,
Z.
,
Metcalf
,
S. J.
,
Critoph
,
R. E.
, and
Wang
,
R. Z.
,
2010
, “
Anisotropic Thermal Conductivity and Permeability of Compacted Expanded Natural Graphite
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1805
1811
.10.1016/j.applthermaleng.2010.04.014
You do not currently have access to this content.