A novel two-phase thermosyphon based on automotive technology is presented as a valid solution for the cooling of power-electronic semiconductor modules. A horizontal evaporator configuration is investigated. This solution is based on a 90 deg-shaped thermosyphon that allows an optimal geometrical arrangement of the cooler with limited volume occupancy, reduced air pressure drop, and weight as well as optimal thermal performance compared with standard heat-sink technology. The 90 deg-shape refers to the mutual arrangement of the evaporator body and the condenser, which are in a horizontal and vertical position, respectively. The evaporator cools three power modules with a total power loss between 500 and 1500 W. Experimental results are presented for inlet air temperatures ranging from 20 to 50 °C and for different air volume flow rates between 200 and 400 m3/h. The working fluid is refrigerant R245fa. The maximum thermal resistance (cooler base to air) attained values between 40 and 50 K/kW.

References

1.
Mudawar
,
I.
,
2000
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
InterSociety Conference on Thermal Phenomena
, IEEE.
2.
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer
,
133
, p.
110801
.10.1115/1.4004340
3.
Katoh
,
T.
, and
Xu
,
G.
,
2004
, “
New Attempt of Forced-Air Cooling for High Heat-Flux Applications
,”
InterSociety Conference on Thermal Phenomena
, IEEE.
4.
Zhang
,
Y. P.
,
Yu
,
X. L.
,
Feng
,
Q. K.
, and
Zhang
,
L. H.
,
2009
, “
Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
,”
ASME J. Thermal Sci. Eng. Appl.
,
1
, p.
021003
.10.1115/1.4000285
5.
Howes
,
J. C.
,
Levett
,
D. B.
,
Wilson
,
S. T.
,
Marsala
,
J.
, and
Saums
,
D. L.
,
2008
, “
Cooling of an IGBT Drive System With Vaporizable Dielectric Fluid (VDF)
,”
24th IEEE Semi-Therm Symposium
.
6.
Perpiña
,
X.
,
Garonne
,
O.
,
Rochet
,
J.-P.
,
Jalby
,
P.
,
Mermet-Guyennet
,
M.
, and
Rebollo
,
J.
,
2007
, “
Experimental Analysis of Temperature Distribution Within Traction IGBT Modules
,”
Conference on Power Electronics Applications
.
7.
Kang
,
S.
,
2012
, “
Advanced Cooling for Power Electronics
,”
CIPS 2012—International Conference on Integrated Power Electronics Systems
.
8.
Ng
,
C. Y. R.
,
Wong
,
Y. W.
,
Liu
,
C. Y.
, and
Choo
,
K. F.
,
1998
, “
Thermosyphon-Cooled Bellow Liquid Heat Sink
,”
1998 IEEE/CPMT Electronics Packaging Technology Conference
.
9.
Pal
,
A.
,
Joshi
,
Y. K.
,
Beitelmal
,
M. H.
,
Patel
,
C. D.
, and
Wenger
T. M.
,
2002
, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
601
607
.10.1109/TCAPT.2002.807997
10.
Park
,
C.
,
Vallury
,
A.
, and
Zuo
,
J.
,
2009
, “
Performance Evaluation of a Pump-Assisted, Capillary Two-Phase Cooling Loop
,”
ASME J. Thermal Sci. Eng. Appl.
,
1
, p.
022004
.10.1115/1.4000405
11.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W.
I
.
,
1998
, “
Combined Effects of Sub-Cooling and Operating Pressure on the Performance of a Two-Chamber Thermosyphon
,”
InterSociety Conference on Thermal Phenomena
, IEEE.
12.
Palm
,
B.
, and
Khodabandeh
,
R.
,
2003
, “
Choosing Working Fluid for Two-Phase Thermosyphon Systems for Cooling of Electronics
,”
ASME J. Electron. Packag.
,
125
, pp.
276
281
.10.1115/1.1571570
13.
Chu
,
R. C.
,
Simons
,
R. E.
, and
Chrysler
,
G. M.
,
1999
, “
Experimental Investigation of an Enhanced Thermosyphon Heat Loop for Cooling of a High Performance Electronics Module
,”
15th IEEE SEMI-THERM Symposium
.
14.
Khrustalev
,
D.
,
2002
, “
Loop Thermosyphons for Cooling of Electronics
,”
18th IEEE Semi-Therm Symposium
.
15.
Agostini
,
F.
,
Gradinger
,
T.
, and
de Falco
,
C.
,
2011
, “
Simulation Aided Design of a Two-Phase Thermosyphon for Power Electronics Cooling
,”
IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society
.
16.
Agostini
,
F.
, and
Agostini
,
B.
,
2011
, “
Flexible Two-Phase Thermosyphon for Power Electronic Cooling
,”
IEEE 33rd International Telecommunications Energy Conference (INTELEC)
.
17.
Agostini
,
B.
, and
Habert
,
M.
,
2012
, “
Compact Thermosyphon Heat Exchanger for Power Electronics Cooling
,”
16th International Heat Pipe Conference (IHPC)
.
18.
Habert
,
M.
, and
Agostini
,
B.
,
2012
, “
Performance of a Gravity-Driven and Capillary-Sized Thermosyphon Loop Working With Ammonia
,”
16th International Heat Pipe Conference (IHPC)
.
19.
Agostini
,
B.
, and
Yesin
,
B.
,
2008
, “
Modeling of a Gravity Driven Two-Phase Loop
,”
International Conference on Nano-, Micro- and Minichannels (ICNMM)
.
20.
Agostini
,
F.
, and
Malinowski
,
L.
,
2012
, “
Electrically Insulating Two-Phase Cooling System
,”
13th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
.
21.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP. 9.0.
You do not currently have access to this content.