The blast furnace process is a counter-current moving bed chemical reactor to reduce iron oxides to iron, which involves complex transport phenomena and chemical reactions. The iron ore and coke are alternatively charged into the blast furnace, forming a layer by layer structural burden which is slowly descending in the counter-current direction of the ascending gas flow. A new methodology was proposed to efficiently simulate the gas and solid burden flow in the counter-current moving bed in blast furnace shaft. The gas dynamics, burden movement, chemical reactions, heat and mass transfer between the gas phase and solid phase are included. The new methodology has been developed to explicitly consider the effects of the layer thickness thermally and chemically in the CFD model.

References

References
1.
Birat
,
J. P.
,
Hanort
,
F.
, and
Danloy
,
G.
,
2003
, “
CO2 Mitigation Technologies in the Steel Industry: A Benchmarking Study Based on Process Calculations
,”
Proceedings of 3rd International Conference on Science and Technology of Ironmaking (ICSTI)
,
Dusseldorf
, pp.
588
592
.
2.
Xiong
,
Q.
,
Li
,
B.
,
Xu
,
J.
,
Fang
,
X.
,
Wang
,
X.
,
Wang
,
L.
,
He
,
X.
, and
Ge
,
W.
,
2012
, “
Efficient Parallel Implementation of the Lattice Boltzmann Method on Large Clusters of Graphic Processing Units
,”
Chin. Sci. Bull.
,
57
(
7
), pp.
707
715
.10.1007/s11434-011-4908-y
3.
Xiong
,
Q.
,
Li
,
B.
,
Xu
,
J.
,
Wang
,
X.
,
Wang
,
L.
, and
Ge
,
W.
,
2012
, “
Efficient 3D DNS of Gas-Solid Flows on Fermi GPGPU
,”
Comput. Fluids
,
70
, pp.
86
94
.10.1016/j.compfluid.2012.08.026
4.
Xiong
,
Q.
,
Li
,
B.
,
Zhou
,
G.
,
Fang
,
X.
,
Xu
,
J.
,
Wang
,
J.
He
,
X.
,
Wang
,
X.
,
Wang
,
L.
,
Ge
,
W.
, and
Li
,
J.
,
2012
, “
Large-Scale DNS of Gas–Solid Flows on Mole-8.5
,”
Chem. Eng. Sci.
,
71
, pp.
422
430
.10.1016/j.ces.2011.10.059
5.
Wang
,
L.
,
Zhou
,
G.
,
Wang
,
X.
,
Xiong
,
Q.
, and
Ge
,
W.
,
2010
, “
Direct Numerical Simulation of Particle–Fluid Systems by Combining Time-Driven Hard-Sphere Model and Lattice Boltzmann Method
,”
Particuology
,
8
(
4
), pp.
379
382
.10.1016/j.partic.2010.07.003
6.
Austin
,
P. R.
,
Nogami
,
H.
, and
Yagi
,
J. I.
,
1997
, “
A Mathematical Model of Four Phase Motion and Heat Transfer in the Blast Furnace
,”
ISIJ Int.
,
37
(
5
), pp.
458
467
.10.2355/isijinternational.37.458
7.
Austin
,
P. R.
,
Nogami
,
H.
, and
Yagi
,
J. I.
,
1997
, “
A Mathematical Model for Blast Furnace Reaction Analysis Based on the Four Fluid Model
,”
ISIJ Int.
,
37
(
8
), pp.
748
755
.10.2355/isijinternational.37.748
8.
Burke
,
P. D.
, and
Burgess
,
J. M.
,
1989
, “
A Coupled Gas and Solid Flow Heat Transfer and Chemical Reaction Rate Model for the Ironmaking Blast Furnace
,”
Ironmaking Conference Proceedings
, vol.
48
, pp.
773
781
.
9.
Castro
A. J.
,
Nogami
,
H.
, and
Yagi
,
J. I.
,
2002
, “
Three-dimensional Multiphase Mathematical Modeling of the Blast Furnace Based on the Multifluid Model
,”
ISIJ Int.
,
42
(
1
), pp.
44
52
.10.2355/isijinternational.42.44
10.
Dong
,
X. F.
,
Yu
,
A. B.
,
Chew
,
S. J.
, and
Zulli
,
P.
,
2010
, “
Modeling of Blast Furnace With Layered Cohesive Zone
,”
Metall. Mater. Trans. B
,
41
(
2
), pp.
330
349
.10.1007/s11663-009-9327-y
11.
Sawa
,
Y.
,
Takeda
,
K.
, and
Taguchi
,
S.
,
1991
, ‘
Mathematical Modeling of Blast Furnace Characterized by the Precise Layer Structure in Stock Column
,”
Ironmaking Conference Proceedings
, Vol.
50
, pp.
417
423
.
12.
Yang
,
K.
,
Choi
,
S.
,
Chung
,
J.
, and
Yagi
,
J. I.
,
2010
, “
Numerical Modeling of Reaction and Flow Characteristics in a Blast Furnace With Consideration of Layered Burden
,”
ISIJ Int.
,
50
(
7
), pp.
972
980
.10.2355/isijinternational.50.972
13.
Kuwabara
,
M.
, and
Muchi
,
I.
,
1975
, “
Mathematical Model for Blast Furnace Operation With Horizontal Layers of Burdens
,”
J. Iron Steel Inst. Jpn.
,
61
(
3
), pp.
301
311
.
14.
Van der Vliet
,
C.
,
2009
,
Modern Blast Furnace Ironmaking: An Introduction
,
Ios Press
, Amsterdam, The Netherlands.
15.
Ichida
,
M.
,
Takao
,
M.
,
Kunitomo
,
K.
,
Matsuzaki
,
S.
,
Deno
,
T.
, and
Nishihara
,
K.
,
1996
, “
Radial Distribution of Burden Descent Velocity Near Burden Surface in Blast Furnace
,”
ISIJ Int.
,
36
(
5
), pp.
493
502
.10.2355/isijinternational.36.493
16.
Nick
,
R. S.
,
Tilliander
,
A.
,
Jonsson
,
T. L. I.
, and
Jonsson
,
P. G.
,
2013
, “
Mathematical Model of Solid Flow Behavior in a Real Dimension Blast Furnace
,”
ISIJ Int.
,
53
(
6
), pp.
979
987
.10.2355/isijinternational.53.979
17.
Strassburger
,
J. H.
, ed.,
1969
,
Blast Furnace Theory and Practice
,
Gordon and Breach Science Publishers
, Philadelphia, PA, Vol.
2
.
18.
Spitzer
,
R. H.
,
Manning
,
F. S.
, and
Philbrook
,
W. O.
,
1966
, “
Generalized Model for the Gaseous, Topochemical Reduction of Porous Hematite Spheres
,”
AIME Met Soc Trans.
,
236
(
12
), pp.
1715
1724
.
19.
Iwanaga
,
Y.
, and
Takatani
,
K.
,
1989
, “
Mathematical Model Analysis for Oxidation of Coke at High Temperature
,”
ISIJ Int.
,
29
(
1
), pp.
43
48
.10.2355/isijinternational.29.43
20.
Ergun
,
S.
,
1953
, “
Pressure Drop in Blast Furnace and in Cupola
,”
Ind. Eng. Chem.
,
45
(
2
), pp.
477
485
.10.1021/ie50518a060
21.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-fluid Heat Transfer Coefficients in Packed Beds: Correlation of Nusselt Numbers
,”
Chem. Eng. Sci.
,
34
(
3
), pp.
325
336
.10.1016/0009-2509(79)85064-2
22.
Rhodes
,
M.
, ed.,
2008
,
Introduction to Particle Technology
,
Wiley
, West Sussex, UK, pp.
155
.
You do not currently have access to this content.