A mathematical model is developed to evaluate the feasibility of an in vivo implanted drug delivery system. The delivery device consists of a cooling material coated by a drug-loaded thermoresponsive polymeric film. Drug release is initiated by remotely dropping the temperature of the cooling material sufficiently for the temperature throughout the polymer coating to drop below its volume phase transition temperature (VPTT), causing the polymer to swell and release the drug. Drug release switches off again when heat conduction from an external fluid medium raises the polymer temperature to above the VPTT causing the polymer to collapse. Candidate cooling mechanisms based on endothermic chemical reactions, the Peltier effect, and the magnetocaloric effect is considered. In the thin polymer film limit, the model provides an upper bound for the temperature the cooling material must be lowered for drug release to be initiated. Significantly, the model predicts that the duration a thin polymer will continue to release drug in a single cycle is proportional to the square of the thickness of the cooling material. It is found that the system may be realized for realistic parameter values and materials. A simple illustrative calculation incorporating the presence of a heat source is presented, and the results suggest that conduction due to the initial temperature difference between the water and the cooling material can make the dominant contribution to heat transfer in the polymer as it reheats to its VPTT.

References

References
1.
Xia
,
Y.
,
Yin
,
X.
,
Burke
,
N.
, and
Stover
,
H.
,
2005
, “
Thermal Response of Narrow-Disperse Poly(n-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization
,”
Macromolecules
,
38
(
14
), pp.
5937
5943
.10.1021/ma050261z
2.
O'Connor
,
P.
,
Yang
,
R.
,
Carroll
,
W. M.
,
Rochev
,
Y.
, and
Aldabbagh
,
F.
,
2012
, “
Facile Synthesis of Thermoresponsive Block Copolymers of N-Isopropylacrylamide Using Heterogeneous Controlled/Living Nitroxide-Mediated Polymerizations in Supercritical Carbon Dioxide
,”
Eur. Polym. J.
,
48
(
7
), pp.
1279
1288
.10.1016/j.eurpolymj.2012.04.011
3.
Winnik
,
F.
,
Ringsdorf
,
H.
, and
Venzmer
,
J.
,
1990
, “
Methanol-Water as a Co-Nonsolvent System for Poly (N-isopropylacrylamide)
,”
Macromolecules
,
23
(
8
), pp.
2415
2416
.10.1021/ma00210a048
4.
Plamper
,
F.
,
Ruppel
,
M.
,
Schmalz
,
A.
,
Borisov
,
O.
,
Ballauff
,
M.
, and
Müller
,
A.
,
2007
, “
Tuning the Thermoresponsive Properties of Weak Polyelectrolytes: Aqueous Solutions of Star-Shaped and Linear poly (N, N-dimethylaminoethyl methacrylate)
,”
Macromolecules
,
40
(
23
), pp.
8361
8366
.10.1021/ma071203b
5.
Rösler
,
A.
,
Vandermeulen
,
G.
, and
Klok
,
H.
,
2001
, “
Advanced Drug Delivery Devices via Self-Assembly of Amphiphilic Block Copolymers
,”
Adv. Drug. Delivery Rev.
,
53
(
1
), pp.
95
108
.10.1016/S0169-409X(01)00222-8
6.
Picos-Corrales
,
L. A.
,
Licea-Claverie
,
A.
,
Cornejo-Bravo
,
J. M.
,
Schwarz
,
S.
, and
Arndt
,
K.-F.
,
2012
, “
Well-Defined N-isopropylacrylamide Dual-Sensitive Copolymers With LCST ≈ 38 °C in Different Architectures: Linear, Block and Star Polymers
,”
Macromol. Chem. Phys.
,
213
(
3
), pp.
301
314
.10.1002/macp.201100468
7.
Yin
,
X.
,
Hoffman
,
A. S.
, and
Stayton
,
P. S.
,
2006
, “
Poly(N-isopropylacrylamide-co-propylacrylic acid) Copolymers that Respond Sharply to Temperature and pH
,”
Biomacromolecules
,
7
(
5
), pp.
1381
1385
.10.1021/bm0507812
8.
Matsukata
,
M.
,
Takei
,
Y.
,
Aoki
,
T.
,
Sanui
,
K.
,
Ogata
,
N.
,
Sakurai
,
Y.
, and
Okano
,
T.
,
1994
, “
Temperature Modulated Solubility-Activity Alterations for poly (N-isopropylacrylamide)-Lipase Conjugates
,”
J. Biochem.
,
116
(
3
), pp.
682
686
.
9.
Intra
,
J.
,
Glasgow
,
J.
,
Mai
,
H.
, and
Salem
,
A.
,
2008
, “
Pulsatile Release of Biomolecules From Polydimethylsiloxane (PDMS) Chips With Hydrolytically Degradable Seals
,”
J. Controlled Release
,
127
(
3
), pp.
280
287
.10.1016/j.jconrel.2008.02.001
10.
Kavanagh
,
C.
,
Gorelova
,
T.
,
Selezneva
, I
.
,
Rochev
,
Y.
,
Dawson
,
K.
,
Gallagher
,
W.
,
Gorelov
,
A.
, and
Keenan
,
A.
,
2005
, “
Poly (N-isopropylacrylamide) Copolymer Films as Vehicles for the Sustained Delivery of Proteins to Vascular Endothelial Cells
,”
J. Biomed. Mater. Res. Part A
,
72
(
1
), pp.
25
35
.10.1002/jbm.a.30192
11.
McGillicuddy
,
F.
,
Lynch
, I
.
,
Rochev
,
Y.
,
Burke
,
M.
,
Dawson
,
K.
,
Gallagher
,
W.
, and
Keenan
,
A.
,
2006
, “
Novel Plum Pudding Gels as Potential Drug-Eluting Stent Coatings: Controlled Release of Fluvastatin
,”
J. Biomed. Mater. Res. Part A
,
79
(
4
), pp.
923
933
.10.1002/jbm.a.30839
12.
Twaites
,
B.
,
De las Heras Alarcon
,
C.
,
Cunliffe
,
D.
,
Lavigne
,
M.
,
Pennadam
,
S.
,
Smith
,
J.
,
Górecki
,
D.
, and
Alexander
,
C.
,
2004
. “
Thermo and pH Responsive Polymers as Gene Delivery Vectors: Effect of Polymer Architecture on DNA complexation in vitro
,”
J. Controlled Release
,
97
(
3
), pp.
551
566
.
13.
Nishida
,
K.
,
Yamato
,
M.
,
Hayashida
,
Y.
,
Watanabe
,
K.
,
Yamamoto
,
K.
,
Adachi
,
E.
,
Nagai
,
S.
,
Kikuchi
,
A.
,
Maeda
,
N.
, and
Watanabe
,
H.
,
2004
, “
Corneal Reconstruction With Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium
,”
N. Engl. J. Med.
,
351
(
12
), pp.
1187
1196
.10.1056/NEJMoa040455
14.
Chen
,
G.
,
Svec
,
F.
, and
Knapp
,
D.
,
2008
, “
Light-Actuated High Pressure-Resisting Microvalve for On-Chip Flow Control Based on Thermo-Responsive Nanostructured Polymer
,”
Lab Chip.
,
8
(
7
), pp.
1198
1204
.10.1039/b803293a
15.
Chen
,
C.
,
Serizawa
,
T.
, and
Akashi
,
M.
,
1999
, “
Preparation of Platinum Colloids on Polystyrene Nanospheres and Their Catalytic Properties in Hydrogenation
,”
Chem. Mater.
,
11
(
5
), pp.
1381
1389
.10.1021/cm9900047
16.
Warren
,
K.
,
1958
, “
The Differential Toxicity of Ammonium Salts
,”
J. Clin. Invest.
,
37
(
4
), pp.
497
501
.10.1172/JCI103630
17.
Nolas
,
G.
,
Sharp
,
J.
, and
Goldsmid
,
H.
,
2001
,
Thermoelectrics: Basic Principles and New Materials Developments
,
Springer
,
Heidelberg
.
18.
Snyder
,
G.
,
Fleurial
,
J.
,
Caillat
,
T.
,
Yang
,
R.
, and
Chen
,
G.
,
2002
, “
Supercooling of Peltier Cooler Using a Current Pulse
,”
J. Appl. Phys.
,
92
, p.
1564
.10.1063/1.1489713
19.
Riffat
,
S.
, and
Ma
,
X.
,
2003
, “
Thermoelectrics: A Review of Present and Potential Applications
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
913
935
.10.1016/S1359-4311(03)00012-7
20.
Mishra
,
S.
,
Satpathy
,
S.
, and
Jepsen
,
O.
,
1997
, “
Electronic Structure and Thermoelectric Properties of Bismuth Telluride and Bismuth Selenide
,”
J. Phys. Condens. Matter
,
9
, p.
461
.10.1088/0953-8984/9/2/014
21.
Bahabri
,
F.
,
2012
, “
Investigation of the Structural and Optical Properties of Bismuth Telluride (Bi2Te3) Thin Films
,”
Life Sci. J.
,
9
(
1
), pp.
290
294
. Available at: http://www.lifesciencesite.com/lsj/life0901/041_8071life0901_290_294.pdf
22.
Dresselhaus
,
M.
,
Chen
,
G.
,
Tang
,
M.
,
Yang
,
R.
,
Lee
,
H.
,
Wang
,
D.
,
Ren
,
Z.
,
Fleurial
,
J.
, and
Gogna
,
P.
,
2007
, “
New Directions for Low-Dimensional Thermoelectric Materials
,”
Adv. Mater.
,
19
(
8
), pp.
1043
1053
.10.1002/adma.200600527
23.
Morizane
,
K.
,
Ogata
,
T.
,
Morino
,
T.
,
Horiuchi
,
H.
,
Yamaoka
,
G.
,
Hino
,
M.
, and
Miura
,
H.
,
2012
, “
A Novel Thermoelectric Cooling Device Using Peltier Modules for Inducing Local Hypothermia of the Spinal Cord: The Effect of Local Electrically Controlled Cooling for the Treatment of Spinal Cord Injuries in Conscious Rats
,”
Neurosci. Res.
,
72
(
3
), pp.
279
282
.10.1016/j.neures.2011.12.003
24.
Rothman
,
S.
,
2009
, “
The Therapeutic Potential of Focal Cooling for Neocortical Epilepsy
,”
Neurotherapeutics
,
6
(
2
), pp.
251
257
.10.1016/j.nurt.2008.12.002
25.
Pecharsky
,
V. K.
,
Gschneidner
,
K. A.
,
Pecharsky
,
A. O.
, and
Tishin
,
A. M.
,
2001
, “
Thermodynamics of the Magnetocaloric Effect
,”
Phys. Rev. B
,
64
(
14
), pp.
1444
06
(01–13).10.1103/PhysRevB.64.144406
26.
Pecharsky
,
V.
, and
Gschneidner
,
K.
,
1997
, “
Giant Magnetocaloric Effect in Gd5(Si2Ge2)
,”
Phys. Rev. Lett.
,
78
(
23
), pp.
4494
4497
.10.1103/PhysRevLett.78.4494
27.
von Ranke
,
P. J.
,
Gama
,
S.
,
Coelho
,
A. A.
,
de Campos
,
A.
,
Carvalho
,
A. M. G.
,
Gandra
,
F. C. G.
, and
de Oliveira
,
N. A.
,
2006
, “
Theoretical Description of the Colossal Entropic Magnetocaloric Effect: Application to MnAs
,”
Phys. Rev. B
,
73
(
1
), p.
014415
.10.1103/PhysRevB.73.014415
28.
Campos
,
A. D.
,
Rocco
,
D.
,
Carvalho
,
A.
,
Caron
,
L.
,
Coelho
,
A.
,
Gama
,
S.
,
Silva
,
L. D.
,
Gandra
,
F.
,
Santos
,
A. D.
,
Cardoso
,
L.
,
Ranke
,
P. V.
, and
Oliveira
,
N. D.
,
2006
, “
Ambient Pressure Colossal Magnetocaloric Effect Tuned by Composition in Mn1– xFexAs
,”
Nature Mater.
,
5
(
10
), pp.
802
804
.10.1038/nmat1732
29.
Mundargi
,
R.
,
Shelke
,
N.
,
Babu
,
V.
,
Patel
,
P.
,
Rangaswamy
,
V.
, and
Aminabhav
,
T.
,
2010
, “
Novel Thermo-Responsive Semi-Interpenetrating Network Microspheres of Gellan Gum-Poly(n-isopropylacrylamide) for Controlled Release of Atenolol
,”
J. Appl. Polym. Sci.
,
116
(
3
), pp.
1832
1841
.10.1002/app.31551
30.
Yang
,
R.
,
Vo
,
T. N. T.
,
Gorelov
,
A. V.
,
Aldabbagh
,
F.
,
Carroll
,
W.
,
Meere
,
M.
, and
Rochev
,
Y.
,
2012
, “
A mathematical Model For Pulsatile Release: Controlled Release of Rhodamine B From UV-Crosslinked Thermoresponsive Thin Films
,”
Int. J. Pharm.
,
427
(
2
), pp.
320
327
.10.1016/j.ijpharm.2012.02.024
31.
Coughlan
,
D.
,
Quilty
,
F.
, and
Corrigan
,
O.
,
2004
, “
Effect of Drug Physicochemical Properties on Swelling/Deswelling Kinetics and Pulsatile Drug Release From Thermoresponsive poly(n-isopropylacrylamide) Hydrogels
,”
J. Controlled Release
,
98
(
1
), pp.
97
114
.10.1016/j.jconrel.2004.04.014
32.
Shibayama
,
M.
,
Suetoh
,
Y.
, and
Nomura
,
S.
,
1996
, “
Structure Relaxation of Hydrophobically Aggregated poly(n-isoproplyacrylamide) in Water
,”
Macromolecules
,
29
(
21
), pp.
6966
6968
.10.1021/ma960866i
33.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford
, UK.
34.
Jaluria
,
Y.
, and
Torrance
,
K. E.
,
2003
,
Computational Heat Transfer
,
2nd ed.
,
Taylor & Francis
,
New York
.
35.
Kreith
,
F.
,
Manglik
,
R.
, and
Bohn
,
M.
,
2010
,
Principles of Heat Transfer
,
7th ed.
,
Cengage Learning
, Stamford, CT.
36.
Wolfgang
,
M.
,
Bertrand
,
F.
, and
Stefan
,
D.
,
2006
,
4M 2006—Second International Conference on Multi-Material Micro Manufacture
,
Elsevier
,
Oxford
, UK.
37.
Gross
,
D.
,
1985
, “
Data Sources for Parameters Used in Predictive Modeling of Fire Growth and Smoke Spread,” U.S. Dept. of Commerce
, National Bureau of Standards.
38.
Pennes
,
H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.
39.
Werner
,
J.
, and
Buse
,
M.
,
1988
. “
Temperature Profiles With Respect to Inhomogeneity and Geometry of the Human Body
,”
J. Appl. Physiol.
,
65
(
3
), pp.
1110
1118
.
40.
Arkin
,
H.
,
Xu
,
L.
, and
Holmes
,
K.
,
1994
, “
Recent Developments in Modeling Heat Transfer in Blood Perfused Tissues
,”
IEEE Trans. Biomed. Eng.
,
41
(
2
), pp.
97
107
.10.1109/10.284920
41.
Rabin
,
Y.
, and
Shitzer
,
A.
,
1998
, “
Numerical Solution of the Multidimensional Freezing Problem During Cryosurgery
,”
J. Biomech. Eng.
,
120
(
1
), pp.
32
37
.10.1115/1.2834304
42.
Takada
,
S.
,
Kobayashi
,
H.
, and
Matsushita
,
T.
,
2009
, “
Thermal Model of Human Body Fitted With Individual Characteristics of Body Temperature Regulation
,”
Build. Environ.
,
44
(
3
), pp.
463
470
.10.1016/j.buildenv.2008.04.007
You do not currently have access to this content.