Performance of microchannel heatsink (MCHS) partially filled with foam is investigated numerically. The open cell copper foams have the porosity and pore density in the ranges of 60–90% and 60–100 PPI (pore per inch), respectively. The three-dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method. The performance of microchannel heatsink is evaluated in terms of overall thermal resistance, pressure drop, and heat transfer coefficient and temperature distribution. It is found that the results of the surface temperature profile are in good agreement with numerical data. The results show the microchannel heatsink with insert foam appears to be good candidates as the next generation of cooling devices for high power electronic devices. The thermal resistance for all cases decreases with the decrease in porosity. The uniformity of temperature in this heatsink is enhanced compared the heatsink with no foam. The thermal resistance versus the pumping power is depicted, it is found that 80% is the optimal porosity for the foam at 60 PPI with a minimum thermal resistance 0.346 K/W. The results demonstrate the microchannel heatsink partially filled with foam is capable for removing heat generation 100 watt over an area of 9 × 10−6 m2 with the temperature of heat flux surface up to 59 °C.

References

References
1.
Linan
,
J.
,
Jae
,
M. K.
, and
Evelyn
,
W.
,
2002
, “
Cross-Linked Microchannels for VLSI Hotspot cooling
,”
Proceedings of IMECE
, ASME, New York, pp.
1
5
.
2.
Evelyn
,
N. W.
, and
Lian
,
Z.
,
2002
, “
Micro Machined Jet Arrays for Liquid Impingement Cooling of VLSI Chips
,”
Solid-State Sensor, Actuator and Micro Systems Workshop
, Hilton Head Island, pp.
46
49
.
3.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High Heat Flux Micro Channel Heat Sink for Refrigeration Cooling Applications: Part I: Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
,
48
, pp.
928
940
.10.1016/j.ijheatmasstransfer.2004.09.018
4.
Ghajar
,
M.
, and
Darabi
,
J.
,
2005
, “
Numerical Modeling of Evaporator Surface Temperature of a Micro Loop Heat Pipe at Steady-State Condition
,”
J. Micromech. Microeng
,
15
, pp.
1963
1971
.10.1088/0960-1317/15/10/024
5.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
,
2006
, “
Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications
,”
J. Scr. Mater.
,
55
, pp.
549
552
.10.1016/j.scriptamat.2006.05.030
6.
Zhuan
,
R.
, and
Wang
,
W.
,
2010
, “
Simulation on Nucleate Boiling in Micro-Channel
,”
Int. J. Heat Mass Transfer
,
53
, pp.
502
512
.10.1016/j.ijheatmasstransfer.2009.08.019
7.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE
,
2
, pp.
126
129
.
8.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
9.
Li
,
J.
, and
Peterson
,
G. P.
,
2004
, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4215
4231
.10.1016/j.ijheatmasstransfer.2004.04.018
10.
Jung
,
J. Y.
, and
Kwak
,
H. Y.
,
2008
, “
Fluid Flow and Heat Transfer in Micro Channels With Rectangular Cross Section
,”
Heat Mass Transfer
,
44
, pp.
1041
1049
.10.1007/s00231-007-0338-4
11.
Dix
,
J.
, and
Jokar
,
A.
,
2010
, “
Fluid and Thermal Analysis of a Microchannel Electronics Cooler Using Computational Fluid Dynamics
,”
Int. J. Appl. Therm. Eng.
,
30
, pp.
948
961
.10.1016/j.applthermaleng.2010.01.007
12.
Jiang
,
Pei. X.
,
Fan
,
Ming. H.
,
Si
,
Guang. S.
, and
Ren
,
Z. P.
,
2001
, “
Thermal-Hydraulic Performance of Small Scale Microchannel and Porous Media Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1039
1051
.10.1016/S0017-9310(00)00169-1
13.
Carretiera
,
E.
,
Ferrassea
,
J. H.
,
Vicenteb
,
J.
,
Topinb
,
F.
, and
Moulin
,
P.
,
2009
, “
Separation of Particles From Hot Gases Using Metallic Foams
,”
J. Mater. Process. Technol.
, 209,
8
, pp.
3859
3868
.10.1016/j.jmatprotec.2008.08.033
14.
Liu
,
S.
, and
Zhang
,
B. M.
,
2010
, “
Experimental Study on a Transpiration Cooling Thermal Protection System
,”
Sci. China Technol. Sci.
,
53
(
10
), pp.
2765
2771
.10.1007/s11431-010-4055-8
15.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2006
, “
Sintered Porous Medium Heat Sink for Cooling of High Power Mini-Devices
,”
Int. J. Heat Fluid Flow
,
27
, pp.
259
266
.10.1016/j.ijheatfluidflow.2005.08.005
16.
Jiang
,
P. X.
,
Li
,
M.
,
Lu
,
T. J.
,
Yu
,
L.
,
Ren
,
Z. P.
,
2004
, “
Experimental Research on Convection Heat Transfer in Sintered Porous Plate Channels
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2085
2096
.10.1016/j.ijheatmasstransfer.2003.12.004
17.
Jen
,
Tien. C.
, and
Yan
,
T. Z.
,
2005
, “
Developing Fluid Flow and Heat Transfer in a Channel Partially Filled With Porous Medium
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3995
4009
.10.1016/j.ijheatmasstransfer.2005.04.021
18.
Rallabandi
,
A. P.
,
Rhee
,
D. H.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2010
, “
Heat Transfer Enhancement in Rectangular Channels With Axial Ribs or Porous Foam Under Through Flow and Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4663
4671
.10.1016/j.ijheatmasstransfer.2010.06.027
19.
Li
,
H. Y.
,
Leong
,
K. C.
,
Jin
,
L. W.
, and
Chai
,
J. C.
,
2010
, “
Transient Behavior of Fluid Flow and Heat Transfer With Phase Change in Vertical Porous Channels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
5209
5222
.10.1016/j.ijheatmasstransfer.2010.07.039
20.
Haddad
,
O. M.
,
Al-Nimr
,
M. A.
, and
Al-Omary
,
J. S.
,
2007
, “
Forced Convection of Gaseous Slip-Flow in Porous Micro-Channels Under Local Thermal Non-Equilibrium Conditions
,”
Transp. Porous Med.
,
67
, pp.
453
471
.10.1007/s11242-006-9036-9
21.
Hooman
,
K.
,
2008
, “
Heat and Fluid Flow in a Rectangular Microchannel Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5804
5810
.10.1016/j.ijheatmasstransfer.2008.05.010
22.
Tamayol
,
A.
,
Khosla
,
A.
,
Gray
,
B.
, and
Bahrami
,
M.
,
2010
, “
Pressure Drop in Microchannels Filled With Porous Media
,”
Proceedings of ASME 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels
, Microchannels, and Minichannels, Montreal, Canada, August 2–4, Paper No. FEDSM2010-ICNMM2010-30559, pp.
1
10
.
23.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier Ltd.
, London.
24.
Dix
,
J.
,
Jokar
,
A.
,
Martinsen
,
R.
,
2008
, “
Enhanced Micro Channel Cooling for High Power Semiconductor Diode Lasers
,” SPIE Photonics West, San Jose, CA, Paper No. SPIE LASE 6876-5.
25.
Zhang
,
H. Y.
,
Pinjala
,
D.
, and
Joshi
,
Y. K.
,
2005
, “
Fluid Flow and Heat Transfer in Liquid Cooled Foam Heat Sinks for Electronic Packages
,”
IEEE, Trans. Compon. Packag. Technol.
,
28
, pp.
272
280
.10.1109/TCAPT.2005.848528
26.
Yarin
,
L. P.
,
Mosyak
,
A.
, and
Hetstroni
,
G.
,
2009
,
Fluid Flow Heat Transfer and Boiling in Microchannels
,
Springer
,
New York
.
You do not currently have access to this content.