The process of welding has a direct influence on the integrity of the structural components and their mechanical response during service. Welding is an inherently multiphysics problem, encompassing a large array of physical phenomena—fluid flow in the weld pool, heat flow in the structure, microstructural evolution/phase transformations, thermal stress development, and distortion of the welded structure. The mathematical model to simulate the coupled fields of the welding process has been outlined in Part I of the present study. In Part I, the developed model have been validated with experimental results and the depth/width (D/W) predictions agree well. Part II documents the effects of welding parameters (welding current/speed, electrode gap, and electrode angle) on the weld D/W ratio, for both low (≤40 ppm) and high (≥150 ppm) surface active agent (oxygen) content. The parametric characterization of the weld D/W ratio is validated with published experimental data. They agree well. Results show that increasing the oxygen content beyond 150 ppm does not increase the weld D/W ratio. At high oxygen content of 150 ppm and under current variation, the weld D/W ratio increases and remains constant beyond 160 A. However, when the welding speed is varied, the weld D/W ratio decreases with increasing speed. Similarly, increasing the electrode gap under high oxygen content decreases the weld D/W ratio. The weld D/W ratio shows weak variation with electrode tip angle. The results from the present simulations have also been used to predict the modes of weld solidification. With increase in welding speed, finer dendritic microstructures are expected to be formed near the weld centerline. The variation of weld D/W with heat input per unit length of weld is also presented elaborately. The workpiece deformation and stress distributions are also highlighted. The present study shows the pertinence of coupled welding process simulation to delineate the underlying physical processes and thereby better predict the behavior of welded structures.

References

References
1.
Kou
,
S.
,
2002
,
Welding Metallurgy
,
2nd ed.
,
John Wiley & Sons
,
New York
.
2.
Sen
,
D.
,
Pierson
,
M. A.
, and
Ball
,
K. S.
,
2013
, “
Coupled Field Analysis of a Gas Tungsten Arc Welded Butt Joint—Part I: Improved Modeling
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011010
.10.1115/1.4007860
3.
Sluzalec
,
A.
,
1990
, “
Thermal Effects in Friction Welding
,”
Int. J. Mech. Sci.
,
32
, pp.
467
478
.10.1016/0020-7403(90)90153-A
4.
Khandkar
,
M. Z. H.
, and
Jamil
,
K.
,
2003
, “
Predicting Residual Thermal Stresses in Friction Stir Welding
,” ASME IMECE, Washington, DC, Nov. 15–21, Vol.
374
, pp.
355
360
.
5.
Canas
,
J.
,
Picon
,
R.
,
Paris
,
F.
,
Blazquez
,
A.
, and
Marin
,
J. C.
,
1996
, “
A Simplified Numerical Analysis of Residual Stresses in Aluminum Welded Plates
,”
Comput. Struct.
,
58
(
1
), pp.
59
69
.10.1016/0045-7949(95)00112-T
6.
Oddy
,
A. S.
,
McDill
,
J. M.
, and
Goldak
,
J. A.
,
1990
, “
Consistent Strain Fields in 3D Finite Element Analysis of Welds
,”
ASME J. Pressure Vessel Technol.
,
112
(3), pp. 309–311.10.1115/1.2928631
7.
Yuan
,
F.
, and
Sun
,
H.
,
1991
, “
Transient Temperature Fields and Residual Stress Fields of Metallic Materials Under Welding
,”
Appl. Math. Mech.
,
12
, pp.
595
599
.10.1007/BF02015573
8.
Murakawa
,
H.
,
Luo
,
Y.
, and
Ueda
,
Y.
,
1998
, “
Theoretical Prediction of Welding Deformation at Groove in Narrow Gap Welding
,”
ASM Proceedings of the International Conference: Trends in Welding Research
,
Pine Mountain, GA
, pp.
993
998
.
9.
Chidiac
,
S. E.
, and
Mirza
,
F. A.
,
1993
, “
Thermal Stress Analysis Due to Welding Processes by the Finite Element Method
,”
Comput. Struct.
,
46
, pp.
407
412
.10.1016/0045-7949(93)90210-5
10.
Kong
,
F.
, and
Kovacevic
,
R.
,
2010
, “
3D Finite Element Modeling of the Thermally Induced Residual Stress in the Hybrid Laser/Arc Welding of Lap Joint
,”
J. Mater. Process. Technol.
,
210
, pp.
941
950
.10.1016/j.jmatprotec.2010.02.006
11.
Oreper
,
G. M.
,
Eagar
,
T. W.
, and
Szekely
,
J.
,
1983
, “
Convection in Arc Weld Pools
,”
Weld. J.
,
62
(
11
), pp.
307
312
.
12.
Kou
,
S.
, and
Wang
,
Y. H.
,
1986
, “
Weld Pool Convection and Its Effect
,”
Weld. J.
,
65
(
3
), pp.
63s
70s
.
13.
Heiple
,
C. R.
, and
Roper
,
J. R.
,
1982
, “
Mechanism for Minor Element Effect on GTA Fusion Zone Geometry
,”
Weld. J.
,
61
, pp.
97s
102s
.
14.
Heiple
,
C. R.
, and
Roper
,
J. R.
,
1982
, “
Effects of Minor Elements of GTAW Fusion Zone Shape
,”
Trends in Welding Research in the United States
, ASM, Materials Park, OH, pp. 489–520.
15.
Heiple
,
C. R.
,
Roper
,
J. R.
,
Stagner
,
R. T.
, and
Aden
,
R. J.
,
1983
, “
Surface Active Element Effects on the Shape of GTA, Laser, and Electron Beam Welds
,”
Weld. J.
,
62
, pp.
72s
77s
.
16.
Sheng
,
I. C.
, and
Chen
,
Y.
,
1992
, “
Modeling Welding by Surface Heating
,”
ASME J. Eng. Mater. Technol.
,
114
, pp.
439
449
.10.1115/1.2904197
17.
Chen
,
Y.
, and
Sheng
,
I. C.
,
1993
, “
On the Solid-fluid Transition Zone in Welding Analysis
,”
ASME J. Eng. Mater. Technol.
,
115
, pp.
17
23
.10.1115/1.2902150
18.
Leblond
,
J. B.
, and
Devaux
,
J. C.
,
1984
, “
A Kinetic Model for Anisothermal Metallurgical Transformation in Steels Including Effect of Austenite Grain Size
,”
Acta Metall.
,
32
, pp.
137
146
.10.1016/0001-6160(84)90211-6
19.
Leblond
,
J. B.
,
Mottet
,
G.
, and
Devaux
,
J. C.
,
1986
, “
A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformations: I: Derivation of General Equations
,”
J. Mech. Phys. Solids
,
34
, pp.
395
409
.10.1016/0022-5096(86)90009-8
20.
Oddy
,
A. S.
,
Goldak
,
J. A.
, and
McDill
,
J. M.
,
1990
, “
A General Transformation Plasticity Relation for 3D Finite Element Analysis of Welds
,”
Eur. J. Mech. A/Solids
,
9
, pp.
253
263
.
21.
Oddy
,
A. S.
,
Goldak
,
J. A.
, and
McDill
,
J. M.
,
1992
, “
Transformation Plasticity and Residual Stresses in Single-Pass Repair Welds
,”
ASME J. Pressure Vessel Technol.
,
114
, pp.
33
38
.10.1115/1.2929009
22.
Ronda
,
J.
,
Murakawa
,
H.
,
Oliver
,
G. J.
, and
Ueda
,
Y.
,
1995
, “
Thermo-Mechano-Metallurgical Model of Welded Steel: II. Finite Element Formulation and Constitutive Equations
,”
Trans. JWRI
,
14
, pp.
1
21
.
23.
Kim
,
J. W.
,
Im
,
S. W.
, and
Kim
,
H. G.
,
2005
, “
Numerical Implementation of a Thermo-Elastic-Plastic Constitutive Equation in Consideration of Transformation Plasticity in Welding
,”
Int. J. Plast.
,
21
, pp.
1383
1408
.10.1016/j.ijplas.2004.06.007
24.
Deng
,
D.
, and
Murakawa
,
H.
,
2006
, “
Prediction of Welding Residual Stress in Multi-Pass Butt-Welded Modified 9cr-1Mo Steel Pipe Considering Phase Transformation Effects
,”
Comput. Mater. Sci.
,
37
, pp.
209
219
.10.1016/j.commatsci.2005.06.010
25.
Lee
,
C. H.
,
2008
, “
Computational Modeling of the Residual Stress Evolution due to Solid-State Phase Transformation During Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
16
, pp.
1
16
.10.1088/0965-0393/16/7/075003
26.
Lindgren
,
L. E.
,
2001
, “
Finite Element Modeling and Simulation of Welding. Part 1: Increased Complexity
,”
J. Therm. Stresses
,
24
(
2
), pp.
141
192
.10.1080/01495730150500442
27.
Lindgren
,
L. E.
,
2001
, “
Finite Element Modeling and Simulation of Welding. Part 2: Improved Material Modeling
,”
J. Therm. Stresses
,
24
(
3
), pp.
195
231
.10.1080/014957301300006380
28.
Lindgren
,
L. E.
,
2007
,
Computational Welding Mechanics—Thermomechanical and Microstructural Simulations
,
1st ed.
, Woodhead Publishing, Cambridge, UK.
29.
Lu
,
S. P.
,
Fujii
,
H.
, and
Nogi
,
K.
,
2005
, “
Influence of Welding Parameters and Shielding Gas Composition on GTA Weld Shape
,”
ISIJ Int.
,
45
, pp.
66
70
.10.2355/isijinternational.45.66
You do not currently have access to this content.