Experiments to investigate heat transfer and pressure loss from jet array impingement are performed on the target wall at high Reynolds numbers. Reynolds numbers up to 450,000 are tested. The presence of a turbulated target wall and its effect on heat transfer enhancement against a smooth surface is investigated. Two different jet plate configurations are used with closely spaced holes and with angled as well as normal impingement holes. The test section cross-section is designed to expand along the streamwise direction maintaining the jet plate to target wall distance in order to reduce cross-flow effects. The jet plate holes are chamfered or filleted to minimize pressure loss through the jet plate. Heat transfer and pressure loss measurements are performed on a smooth target wall as well as turbulated target walls. Three turbulators configurations are used with streamwise riblets, short pins, and spherical dimples. A steady-state heat transfer measurement method is used to obtain the heat transfer coefficients while pressure taps located in the plenum and at several streamwise locations are used to record the pressure losses across the jet plate. Experiments are performed for a range of Reynolds numbers from 50,000 to 450,000 based on average jet hole diameters to cover the incompressible as well as compressible flow regimes. A target wall with short pins provides the best heat transfer with the dimpled target wall giving the lowest heat transfer among the three turbulators geometries studied. Addition of turbulators though does not significantly increase the pressure losses in the test section over the smooth target wall.

References

References
1.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
2.
Metzger
,
D. E.
,
Florscheutz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
, pp.
526
531
.10.1115/1.3451022
3.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
, pp.
132
137
.10.1115/1.3244224
4.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
, pp.
337
342
.10.1115/1.3244463
5.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Su
,
C. C.
,
1984
, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
ASME J. Heat Transfer
,
106
, pp.
34
41
.10.1115/1.3246656
6.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Jets
,”
AIAA J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.10.2514/2.6304
7.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Coefficient Distributions Under an Array of Inclined Impinging Jets Using a Transient Liquid Crystal Technique
,” 9th International Symposium on Transport Phenomenon in Thermal Fluids Engineering, ISTP-9, Singapore, June 25–28.
8.
Trabolt
,
T. A.
, and
Obot
,
N. T.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets, Part II: Effects of Crossflow in the Presence of Roughness Elements
,” Proceedings of the ASME-IGTI Conference, Anaheim, CA, May 31–June 4.
9.
Gau
,
C.
, and
Lee
,
C. C.
,
1992
, “
Impingement Cooling Flow Structure and Heat Transfer Along Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3009
3020
.10.1016/0017-9310(92)90320-R
10.
Haiping
,
C.
,
Dalin
,
Z.
, and
Taiping
,
H.
,
1997
, “
Impingement Heat Transfer From Rib-Roughened Surfaces With Arrays of Circular Jets
,” ASME Paper No. 97-GT-331.
11.
Chakroun
,
W. M.
,
Al-Fahed
,
S. F.
, and
Abdel-Rehman
,
A. A.
,
1997
, “
Heat Transfer Augmentation for Air Jet Impinged on Rough Surface
,” Proceedings of International Gas Turbine and Aeroengine Congress and Exhibition, Orlando, FL, June 2–5.
12.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Pinned Surfaces Using a Transient Liquid Crystal Technique
,” Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, pp.
731
738
.
13.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.10.2514/2.6530
14.
Yan
,
W. M.
,
Liu
,
H. C.
,
Soong
,
C. Y.
, and
Yang
,
W. J.
,
2005
, “
Experimental Study of Impinging Heat Transfer on Rib-Roughened Walls by Using Transient Liquid Crystal Technique
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2420
2428
.10.1016/j.ijheatmasstransfer.2004.12.048
15.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,” ASME Paper No. 97-GT-437.
16.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
,
1999
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,” ASME Paper No. 99-GT-163.
17.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
, pp.
115
123
.10.1115/1.1333694
18.
Moon
,
S. W.
, and
Lau
,
S. C.
,
2002
, “
Turbulent Heat Transfer Measurements on a Wall With Concave and Cylindrical Dimples in a Square Channel
,” ASME Paper No. GT-2002-30208.
19.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2011
2020
.10.1016/S0017-9310(01)00314-3
20.
Burgess
,
N. K.
,
Oliviera
,
M. M.
, and
Ligrani
,
P. M.
,
2003
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer
,
125
, pp.
11
18
.10.1115/1.1527904
21.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
, pp.
147
153
.10.1115/1.1331537
22.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
, pp.
682
691
.10.1115/1.1624848
23.
Kanokjruviji
,
K.
, and
Martinez-Botas
,
R.
,
2004
, “
Parametric Effects on Heat Transfer of Impingement on Dimpled Surface
,” ASME Paper No. GT2004-53142.
24.
Matsuno
,
S.
,
Nakamata
,
C.
,
Okita
,
Y.
,
Fukuyama
,
Y.
,
Matsushita
,
M.
,
Mimura
,
F.
,
Yamane
,
T.
, and
Yoshida
,
T.
,
2005
, “
Spatial Arrangement Dependence of Cooling Performance of an Integrated Impingement and Pin Fin Cooling Configuration
,” ASME Paper No. GT2005-68348.
25.
Chambers
,
A. C.
,
Gillespie
,
D.
,
Ireland
,
P. T.
, and
Mitchell
,
M.
,
2006
, “
Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes
,” ASME Paper No. GT2006-91229.
26.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation on Staggered Impingement Heat Transfer on a Rib Roughened Plate With Different Crossflow Schemes
,” ASME Paper No. GT2010-22043.
27.
Esposito
,
E.
,
Ekkad
,
S.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2007
, “
Comparing Extended Port and Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling
,” ASME Paper No. GT2007-27390.
28.
Lauffer
,
D.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Dahlke
,
S.
, and
Liebe
,
R.
,
2007
, “
Heat Transfer Enhancement by Impingement Cooling in a Combustor Liner Heat Shield
,” ASME Paper No. GT2007-27908.
29.
Thorpe
,
S.
,
Savarianandam
, V
.
,
Carrotte
,
J.
, and
Zedda
,
M.
,
2012
, “
An Investigation of an Impingement/Pin-Fin Cooling System for Gas Turbine Engine Combustor Applications
,” ASME Paper No. GT2012-68124.
30.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2013
, “
Heat Transfer and Pressure Loss Measurements in a Turbulated High Aspect Ratio Channel With Large Reynolds Number Flows
,” ASME Paper No. GT2013-95891.
31.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New York
, Chaps. 3 and 4.
32.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2006
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,” ASME Paper No. GT2006-90628.
You do not currently have access to this content.