Pretreatment, solar pond (SP), and forced circulation crystallizer (FCC) are the basic stages of one option to provide the goals of zero discharge desalination (ZDD) process. This work represents the performance of a solar pond that is coupled with forced circulation crystallizer as second and third stages of proposed zero discharge desalination process. The purpose of ZDD in this paper is gathering fresh water and saline crystals from effluent wastewater of the desalination unit of Mobin petrochemical complex. So, the SP unit is constructed after the pretreatment unit to concentrate the treated wastewater to about 20 wt. % as a suited feed for the FCC unit. Effects of solar insolation rate are investigated experimentally, during a year. In addition, the effect of cooling water flow rate of FCC on quality of effluent stream from SP as feed crystallizer is studied in this paper. The experimental results show the maximum evaporation rate from SP is obtained 5 l/(m2·d) when the insolation rate was about 2.5 × 104 kJ/(m2·d). Experiments show the suitable range of crystals growth (710 μm to 830 μm) in FCC is occurred when the cooling water flow rate in condenser is 9 kg/min. The size and the color of produced salt crystals will be optimized in this flow rate and energy consumption is measured as 6.98 kW·h.

References

References
1.
Mahdi
,
J. T.
,
Smith
,
B. E.
, and
Sharif
,
A. O.
,
2011
, “
An Experimental Wick-Type Solar Still System: Design and Construction
,”
Desalination
,
267
(
3
), pp.
233
238
.10.1016/j.desal.2010.09.032
2.
Abdel-Rehima
,
Z.
, and
Lasheen
,
A.
,
2007
, “
Experimental and Theoretical Study of a Solar Desalination System Located in Cairo, Egypt
,”
Desalination
,
217
(
1
), pp.
52
64
.10.1016/j.desal.2007.01.012
3.
Giesta
,
M. C.
,
Pina
,
H. L.
,
Milhazes
,
J. P.
, and
Tavares
,
C.
,
2009
, “
Solar Pond Modeling With Density and Viscosity Dependent on Temperature and Salinity
,”
Int. J. Heat Mass Transfer
,
52
(
3
), pp.
2849
2857
.10.1016/j.ijheatmasstransfer.2009.01.003
4.
Prasanna
,
K. S.
, and
Prasad
,
T. J.
,
1999
, “
Formation and Spreading of Arabian Sea High-Salinity Water Mass
,”
J. Geophys. Res., [Oceans] (1978–2012)
,
104
, pp.
1455
1464
.10.1029/1998JC900022
5.
Wang
,
Z.
,
Dimarco
,
S. F.
,
Jochens
,
A. E.
, and
Ingle
,
S.
,
2013
, “
High Salinity Events in the Northern Arabian Sea and Sea of Oman
,”
Deep-Sea Res., Part I
,
74
, pp.
14
24
.10.1016/j.dsr.2012.12.004
6.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Resour. Technol.
,
134
(
2
),
041201
.10.1115/1.4007194
7.
Izquierdo
,
F.
,
Castro
,
Hermida
,
J. A.
, and
Fenoy
,
S.
,
2011
, “
Detection of Microsporidia in Drinking Water, Wastewater and Recreational Rivers
,”
Water Res.
,
45
(
2
), pp.
4837
4842
.10.1016/j.watres.2011.06.033
8.
Minasian
,
A. N.
, and
Al-Karaghouli
,
A. A.
,
1995
, “
An Improved Solar Still: The Wick-Basin Type
,”
Energy Convers. Manage.
,
36
, pp.
213
217
.10.1016/0196-8904(94)00053-3
9.
Al-Hussaini
,
H.
, and
Smith
,
I. K.
,
1995
, “
Enhancing of Solar Still Productivity Using Vacuum Technology
,’’
Energy Convers. Manage.
,
36
, pp.
1047
1051
.10.1016/0196-8904(95)00003-V
10.
Mink
,
G.
,
Horvath
,
L.
,
Evseev
,
E. G.
, and
Kudish
,
A. I.
,
1998
, “
Design Parameters, Performance Testing and Analysis of a Double-Glazed, Air-Blown Solar Still With Thermal Energy Recycle
,”
Sol. Energy
,
64
(
4–6
), pp.
265
277
.10.1016/S0038-092X(98)00076-0
11.
Khalifa
,
A.-J.N.
,
Al-Jubouri
,
A. S.
, and
Abed
,
M. K.
,
1999
, “
An Experimental Study on Modified Simple Solar Stills
,”
Energy Convers. Manage.
,
40
, pp.
1835
1847
.10.1016/S0196-8904(99)00049-7
12.
Garmana
,
M. A.
, and
Muntasser
,
M. A.
,
2008
, “
Sizing and Thermal Study of Salinity Gradient Solar Ponds Connecting With the MED Desalination Unit
,”
Desalination
,
222
(
3
), pp.
689
695
.10.1016/j.desal.2007.02.074
13.
Roca
,
L.
,
Berenguel
,
M.
,
Yebra
,
L.
, and
Alarcón-Padilla
,
D.C.
,
2008
, “
Solar Field Control for Desalination Plants
,”
Sol. Energy
,
82
, pp.
727
786
.10.1016/j.solener.2008.03.002
14.
Amiri
,
M. C.
, and
Samiei
,
M.
,
2007
, “
Enhancing Permeate Flux in a RO Plant by Controlling Membrane Fouling
,”
Desalination
,
207
, pp.
361
369
.10.1016/j.desal.2006.08.011
15.
Tang
,
Y.
,
Chong
,
T. H.
, and
Fane
,
A. G.
,
2011
, “
Colloidal Interactions and Fouling of NF and RO Membranes: A Review
,”
Adv. Colloid Interface Sci.
,
1674
, pp.
126
143
.10.1016/j.cis.2010.10.007
16.
Plewik
,
R.
,
Synowiec
,
P.
,
Wójcik
,
J.
, and
Kuś
,
A.
,
2011
, “
Suspension Flow in Crystallizer With and Without Hydraulic Classification
,”
Chem. Eng. Res. Des.
,
88
(
1
), pp.
1194
1199
.10.1016/j.cherd.2009.08.008
17.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Experimental Study of Forced Circulation Evaporator in Zero Discharge Desalination Process
,”
Desalination
,
285
(
3
), pp.
352
358
.10.1016/j.desal.2011.10.026
18.
Jayanthi
,
M.
,
Mariappan
M. J.
,
Thengaraj
,
N. J.
, and
Kannadevan
,
T.
,
2005
, “
Design and Development of Non Convective Solar Pond
,”
Ecol. Environ. Conserv.
,
11
, pp.
359
362
.
19.
Srithar
,
K.
, and
Mani
,
A.
,
2004
, “
Analysis of a Single Cover FRP Flat Plate Collector for Treating Tannery Effluent
,”
Appl. Therm. Eng.
,
24
, pp.
873
883
.10.1016/j.applthermaleng.2003.10.021
20.
Tamimi
,
A.
, and
Rawajfeh
,
K.
,
2007
, “
Lumped Modeling of Solar-Evaporative Ponds Charged From the Water of the Dead Sea
,”
Desalination
,
216
, pp.
356
366
.10.1016/j.desal.2006.11.022
21.
Velmurugana
,
V.
, and
Srithar
,
K.
,
2007
, “
Solar Stills Integrated With a Mini Solar Pond—Analytical Simulation and Experimental Validation
,”
Desalination
,
216
, pp.
232
224
.10.1016/j.desal.2006.12.012
You do not currently have access to this content.