The aim of this paper is to develop the technical knowledge, especially the optimum geometries, for the design and manufacturing of a supersonic gas–gas ejector for a waste-heat driven vehicle cooling system. Although several studies have been performed to investigate the effects of geometrical configurations of gas–gas ejectors, a progressive design methodology of an ejector compressor for application to a vehicle cooling system has not yet been described. First, an analytical model for calculation of the ejector optimum geometry for a wide range of operating conditions is developed, using R134a as the working fluid with a rated cooling capacity of 2.5 kW. The maximum values of entrainment ratio (ω) have been estimated by correlation of the main parameters in a nondimensional form. The optimum values of nozzle throat diameter (dnt) and mixing chamber diameter (dmc) thus obtained are used as a starting point for the computational fluid dynamics (CFD) optimization covering a wide range of geometrical configurations. To assess the effect of various dimensional quantities, an optimization technique has been proposed for calculation of the most efficient geometry of the target ejector for manufacturing. Using a vehicle cooling system as a test case, the final optimized dimensions are reported and discussed. An experimental validation confirms the CFD results and the ejector performance with a normalized deviation of 5% between observed and simulated results, demonstrating that the methodology is a valid ejector design tool for a wide range of applications.

References

References
1.
Alimohamadi
,
S.
,
Tehrani
,
M. S.
, and
Farhanieh
,
B.
,
2010
, “
Analytical and Numerical Modelling of a Vapor Jet Refrigeration Cycle for Vehicle Air Conditioning
,”
18th Annual International Conference on Mechanical Engineering-ISME
,
Tehran, Iran
, Paper No. 2038.
2.
Riffat
,
S. B.
, and
Everitt
,
P.
,
1999
, “
Experimental and CFD Modelling of an Ejector System for Vehicle Air Conditioning
,”
J. Inst. Energy
,
72
, pp.
41
47
.
3.
Bartosiewicz
,
Y.
,
Aidoun
,
Z.
,
Desevaux
,
P.
, and
Mercadier
,
Y.
,
2005
, “
Numerical and Experimental Investigations on Supersonic Ejectors
,”
Int. J. Heat Fluid Flow
,
26
, pp.
56
70
.10.1016/j.ijheatfluidflow.2004.07.003
4.
Sriveerakul
,
T.
,
Aphornratana
,
S.
, and
Chunnanond
,
K.
,
2007
, “
Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 2. Flow Structure of a Steam Ejector Influenced by Operating Pressures and Geometries
,”
Int. J. Therm. Sci.
,
46
, pp.
823
833
.10.1016/j.ijthermalsci.2006.10.012
5.
Khalil
,
A.
,
Fatouh
,
M.
, and
Egendyi
,
E.
,
2011
, “
Ejector Design and Theoretical Study of R134a Ejector Refrigeration Cycle
,”
Int. J. Refrig.
,
34
, pp.
1684
1698
.10.1016/j.ijrefrig.2011.01.005
6.
Yang
,
X.
,
Long
,
X.
, and
Yao
,
X.
,
2012
, “
Numerical Investigation on the Mixing Process in a Steam Ejector With Different Nozzle Structures
,”
Int. J. Therm. Sci.
,
56
, pp.
95
106
.10.1016/j.ijthermalsci.2012.01.021
7.
Aphornratana
,
S.
, and
Eames
,
I. W.
,
1997
, “
A Small Capacity Steam-Ejector Refrigerator: Experimental Investigation of a System Using Ejector With Movable Primary Nozzle
,”
Int. J. Refrig.
,
20
, pp.
352
358
.10.1016/S0140-7007(97)00008-X
8.
Lucas
,
C.
, and
Koehler
,
J.
,
2012
, “
Experimental Investigation of the COP Improvement of a Refrigeration Cycle by Use of an Ejector
,”
Int. J. Refrig.
,
35
, pp.
1595
1603
.10.1016/j.ijrefrig.2012.05.010
9.
Lucas
,
C.
,
Koehler
,
J.
,
Schroeder
,
A.
, and
Tischendorf
,
C.
,
2012
, “
Experimentally Validated CO2 Ejector Operation Characteristic Used in a Numerical Investigation of Ejector Cycle
,”
Int. J. Refrig.
,
35
, pp.
1595
1603
.10.1016/j.ijrefrig.2012.05.010
10.
Tischendorf
,
C.
,
Lucas
,
C.
,
Koehler
,
J.
, and
Tegethoff
,
W.
,
2010
, “
Visual Investigation of an Ejector Motive Nozzle
,”
Proceedings of the ASME International Mechanical Engineering Congress & Exposition
,
Vancouver, Canada
, Paper No. 38507.
11.
Rogdakis
,
E. D.
, and
Alexis
,
G. K.
,
2000
, “
Design and Parametric Investigation of an Ejector in an Air-Conditioning System
,”
Int. J. Appl. Therm. Eng.
,
20
, pp.
213
226
.10.1016/S1359-4311(99)00013-7
12.
Huang
,
B. J.
,
Chang
,
J. M.
,
Petrenko
,
V. A.
, and
Zhunk
,
K. B.
,
1998
, “
A Solar Ejector Cooling System Using Refrigerant R141b
,”
Sol. Energy
,
64
, pp.
223
226
.10.1016/S0038-092X(98)00082-6
13.
Al-Khalidy
,
N.
, and
Zayonia
,
A.
,
1995
, “
Design and Experimental Investigation of an Ejector in an Air-Conditioning and Refrigeration System
,”
ASHRAE Trans.
,
101
, pp.
383
391
.
14.
Hewedy
,
N. I.
,
Hamed
M. H.
,
Abou-Taleb
F. Sh.
, and
Ghonim
,
T. A.
,
2008
, “
Optimal Performance and Geometry of Supersonic Ejector
,”
ASME J. Fluids Eng.
,
130
, p.
041204
.10.1115/1.2903742
15.
Kim
,
S.
, and
Kwon
,
S.
,
2006
, “
Experimental Determination of Geometric Parameters for an Annular Injection Type Supersonic Ejector
,”
ASME J. Fluids Eng.
,
128
, pp.
1164
1171
.10.1115/1.2353264
16.
Boumaraf
,
L.
, and
Lallemand
,
A.
,
2009
, “
Modeling of an Ejector Refrigerating System Operating in Dimensioning and Off-Dimensioning Conditions With the Working Fluids R142b and R600a
,”
Int. J. Appl. Therm. Eng.
,
29
, pp.
265
274
.10.1016/j.applthermaleng.2008.02.020
17.
Li
,
C.
,
Li
,
Y.
, and
Wang
,
L.
,
2012
, “
Configuration Dependence and Optimization of the Entrainment Performance for Gas-Gas and Gas-Liquid Ejectors
,”
Int. J. Appl. Therm. Eng.
,
48
, pp.
237
248
.10.1016/j.applthermaleng.2011.11.041
18.
Al-Ansary
,
H. A.
,
2006
, “
A Semi-Empirical One-Dimensional Model for Flow in Ejectors Used for Gas Evacuation
,”
Proceedings of ASME 2nd Joint U.S.-European Fluids Engineering Summer Meeting
,
Miami, FL
, Paper No. 98138.
19.
Kim
,
H. D.
,
Setoguchi
,
T.
,
Yu
,
S.
, and
Raghunathan
,
S.
,
1999
, “
Navier-Stokes Computations of the Supersonic Ejector-Diffuser System With a Second Throat
,”
Int. J. Therm. Sci.
,
8
, pp.
79
83
.10.1007/s11630-999-0028-2
20.
Huang
,
B. J.
,
Chang
,
J. M.
,
Wang
,
C. P.
, and
Petrenko
,
V. A.
,
1999
, “
A 1-D Analysis of Ejector Performance
,”
Int. J. Refrig.
,
22
, pp.
354
364
.10.1016/S0140-7007(99)00004-3
21.
Dong
,
J.
,
Pounds
,
D. A.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2012
, “
An Experimental Investigation of Steam Ejector Refrigeration Systems
,”
ASME J. Thermal Sci. Eng. Appl.
,
4
, p.
031004
.10.1115/1.4006714
22.
Da-Wen
,
S.
, and
Eames
,
I. W.
,
1995
, “
Recent Developments in the Design Theories and Applications of Ejectors
,”
J. Inst. Energy
,
68
, pp.
65
79
.
23.
Kong
,
F. S.
,
Kim
,
H. D.
,
Jin
,
Y. Z.
, and
Setoguchi
,
T.
,
2012
, “
Computational Analysis of Mixing Guide Vane Effects on Performance of the Supersonic Ejector-Diffuser System
,”
Open J. Fluid Dyn.
,
2
, pp.
45
55
.10.4236/ojfd.2012.23005
24.
Banasiaka
,
K.
,
Hafnerb
,
A.
, and
Andresenb
,
T.
,
2012
, “
Experimental and Numerical Investigation of the Influence of the Two-Phase Ejector Geometry on the Performance of the R744 Heat Pump
,”
Int. J. Refrig.
,
35
, pp.
1617
1625
.10.1016/j.ijrefrig.2012.04.012
You do not currently have access to this content.