Ribbon growth on substrate (RGS) has emerged as a new method for growing silicon films at low cost for photovoltaic applications by contact solidification. Thermal conditions play an important role in determining the thickness and quality of the as-grown films. In this study, we have developed a mathematical model for heat transfer, fluid flow, and solidification in the RGS process. In particular, a semi-analytical approach is used in this model to predict solidification with a sharp solid–liquid interface without using a moving grid system. A more realistic analytical relationship that considers the varying rate of heat removal at the interface has been developed to evaluate the effective heat transfer rate, solidification rate, and solidification front. These models were used to predict the flow patterns in the crucible, the temperature distributions in the system, the velocity fields in the crucible, the solidification rates, and the film thicknesses. The effects of important operational parameters, such as pulling speed, preheat temperature, and thermal properties of the substrate material, have been examined. In addition, an order of magnitude analysis has been performed to understand heat transfer in the growing film and substrate. This analysis leads to a simplified mathematical model for heat transfer and solidification, which can be resolved analytically to derive theoretical solutions for the effective heat transfer coefficient, the rate of solidification, and the film thickness. The results show that the solidification rate varies largely on the substrate. The non-uniformity can be mitigated by altering the temperature distribution in the silicon melt through manipulating heat generation in the top heater. The rates of solidification and film thickness are very sensitive to both the thermal conductivity and preheat temperature of the substrate. Increasing pulling velocity will increase the rate of solidification at the leading edge but reduce the film thickness. The numerical model and the theoretical solution provide an important tool for thermal design and optimization of the RGS system.

References

References
1.
Braga
,
A. F. B.
,
Moreira
,
S. P.
,
Zampieri
,
P. R.
,
Bacchin
,
J. M. G.
, and
Mei
,
P. R.
,
2008
, “
New Processes for the Production of Solar-Grade Polycrystalline Silicon: A Review
,”
Sol. Energy Mater. Sol. Cells
,
92
(
4
), pp.
418
424
.10.1016/j.solmat.2007.10.003
2.
Müller
,
A.
,
Ghosh
,
M.
,
Sonnenschein
,
R.
, and
Woditsch
,
P.
,
2006
, “
Silicon for Photovoltaic Applications
,”
Mater. Sci. Eng., B
,
134
, pp.
257
262
.10.1016/j.mseb.2006.06.054
3.
Möller
,
H. J.
,
Funke
,
C.
,
Rinio
,
M.
, and
Scholz
,
S.
,
2005
, “
Multicrystalline Silicon for Solar Cells
,”
Thin Solid Films
,
487
, pp.
179
187
.10.1016/j.tsf.2005.01.061
4.
Janoch
,
R. E.
,
Anselmo
,
A. P.
,
Wallace
,
R. L.
,
Martz
,
J.
,
Lord
,
B. E.
, and
Hanoka
,
J. I.
,
2000
, “
PVMaT Funded Manufacturing Advances in String Ribbon Technology
,”
Photovoltaic Specialists Conference
, Anchorage, AK, pp.
1403
1406
.
5.
Surek
,
T.
,
2005
, “
Crystal Growth and Materials Research in Photovoltaics: Progress and Challenges
,”
J. Cryst. Growth
,
275
, pp.
292
304
.10.1016/j.jcrysgro.2004.10.093
6.
Hahn
,
G.
,
Seren
,
S.
,
Kaes
,
M.
,
Schonecker
,
A.
,
Kalejs
,
J. P.
,
Dube
,
C.
,
Grenko
,
A.
, and
Belouet
,
C.
,
2006
, “
Review on Ribbon Silicon Techniques for Cost Reduction in PV
,”
Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference
,
Waikoloa, HI
, pp.
972
975
.
7.
Steinbach
,
I.
, and
Hofs
,
H. U.
,
1997
, “
Microstructural Analysis of the Crystallization of Silicon Ribbons Produced by the RGS Process
,”
Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE
,
Anaheim, CA
, pp.
91
93
.
8.
Lange
,
H.
, and
Schwirtlich
,
I. A.
,
1990
, “
Ribbon Growth on Substrate (RGS)—A New Approach to High Speed Growth of Silicon Ribbons for Photovoltaics
,”
J. Cryst. Growth
,
104
, pp.
108
112
.10.1016/0022-0248(90)90317-E
9.
Schonecker
,
A.
,
Laas
,
L.
,
Gutjahr
,
A.
,
Wyers
,
P.
,
Reinink
,
A.
, and
Wiersma
,
B.
,
2002
, “
Ribbon-Growth-on-Substrate: Progress in High-Speed Crystalline Silicon Wafer Manufacturing
,”
Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE
,
Petten, The Netherlands
, pp.
316
319
.
10.
Kalejs
,
J. P.
,
2002
, “
Silicon Ribbons and Foils—State of the Art
,”
Sol. Energy Mater. Sol. Cells
,
72
, pp.
139
153
.10.1016/S0927-0248(01)00159-3
11.
Seren
,
S.
,
Hahn
,
G.
,
Gutjahr
,
A.
,
Burgers
,
A. R.
, and
Schonecker
,
A.
,
2005
, “
Screen-Printed Ribbon Growth on Substrate Solar Cells Approaching 12% Efficiency
,”
Photovoltaic Specialists Conference, Conference Record of the Thirty-First IEEE, Konstanz University
,
Germany
, pp.
1055
1058
.
12.
Hahn
,
G.
,
Seren
,
S.
,
Sontag
,
D.
,
Gutjahr
,
A.
,
Laas
,
L.
, and
Schonecker
,
A.
,
2003
, “
Over 10% Efficient Screen Printed RGS Solar Cells
,”
Proceedings of 3rd World Conference Photovoltaic Energy Conversion
, Osaka, Japan, 2, pp.
1285
1288
.
13.
Seren
,
S.
,
Hahn
,
G.
,
Gutjahr
,
A.
,
Burgers
,
A. R.
,
Schonecker
,
A.
,
Grenko
,
A.
, and
Jonczyk
,
R.
,
2006
, “
Ribbon Growth on Substrate and Molded Wafer-Two Low Cost Silicon Ribbon Materials for PV
,”
Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, Waikoloa, HI
, pp.
1330
1333
.
14.
Lu
,
J.
,
Rozgonyi
,
G.
,
Schonecker
,
A.
,
Gutjahr
,
A.
, and
Liu
,
Z.
,
2005
, “
Impact of Oxygen on Carbon Precipitation in Polycrystalline Ribbon Silicon
,”
J. Appl. Phys.
,
97
, p.
033509
.10.1063/1.1847699
15.
Appapillai
,
A.
, and
Sachs
,
E.
,
2010
, “
The Effect of Substrate Material on Nucleation Behavior of Molten Silicon for Photovoltaics
,”
J. Cryst. Growth
,
312
, pp.
1297
1300
.10.1016/j.jcrysgro.2009.12.010
16.
Appapillai
,
A. T.
,
Sachs
,
C.
, and
Sachs
,
E.M.
,
2011
, “
Nucleation Properties of Undercooled Silicon at Various Substrates
,”
J. Appl. Phys
,
109
, p.
084916
.10.1063/1.3574446
17.
Apel
,
M.
,
Franke
,
D.
, and
Steinbach
,
I.
,
2002
, “
Simulation of the Crystallisation of Silicon Ribbons on Substrate
,”
Sol. Energy Mater. Sol. Cells
,
72
, pp.
201
208
.10.1016/S0927-0248(01)00165-9
18.
Jeong
,
H.-M.
,
Chung
,
H.-S.
, and
Lee
,
T. W.
,
2010
, “
Computational Simulations of Ribbon-Growth on Substrate for Photovoltaic Silicon Wafer
,”
J. Cryst. Growth
,
312
, pp.
555
562
.10.1016/j.jcrysgro.2009.11.031
19.
Lee
,
J.-S.
,
Jang
,
B.-Y.
, and
Ahn
,
Y.-S.
,
2012
, “
Effect of Processing Parameters on Thickness of Columnar Structured Silicon Wafers Directly Grown From Silicon Melts
,”
Int. J. Photoenergy
,
2012
, p.
5
.
20.
Hu
,
H.
, and
Argyropoulos
,
S.
,
1996
, “
Mathematical Modelling of Solidification and Melting: A Review
,”
Model. Simul. Mater. Sci. Eng.
,
4
, p.
371
.10.1088/0965-0393/4/4/004
21.
Voller
,
V. R.
,
Swaminathan
,
C. R.
, and
Thomas
,
B. G.
,
1990
, “
Fixed Grid Techniques for Phase Change Problems: A Review
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
875
898
.10.1002/nme.1620300419
22.
Basu
,
B.
, and
Date
,
A. W.
,
1988
, “
Numerical Modelling of Melting and Solidification Problems—A Review
,”
Sadhana
,
13
, pp.
169
213
.10.1007/BF02812200
23.
Jaluria
,
Y.
,
2003
, “
Thermal Processing of Materials: From Basic Research to Engineering
,”
J. Heat Transfer
,
125
, pp.
957
979
.10.1115/1.1621889
24.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
New York
, Chap. 6.
25.
Prasad
,
V.
,
Zhang
,
H.
, and
Anselmo
,
A. P.
,
1997
, “
Transport Phenomena in Czochralski Crystal Growth Processes
,”
Adv. Heat Transfer
,
30
, pp.
313
435
.10.1016/S0065-2717(08)70254-5
26.
Ma
,
R. H.
,
Zhang
,
H.
,
Ha
,
S.
, and
Skowronski
,
M.
,
2003
, “
Integrated Process Modeling and Experimental Validation of Silicon Carbide Sublimation Growth
,”
J. Cryst. Growth
,
252
, pp.
523
537
.10.1016/S0022-0248(03)00944-8
27.
Myers
,
G.
,
1971
,
Analytical Methods in Conduction Heat Transfer
,
McGraw-Hill
,
New York
, Chap. 6.
You do not currently have access to this content.