Tremendous attentions have been focused on thermal management to control the temperature of many advanced integrated electronic devices. The liquid metal cooling has recently been validated as a highly effective method to dissipate heat from hot chips. In this study, a practical design and implementation of a buoyancy effect driven liquid metal cooling device for the automatic thermal management of hot chips in a closed cabinet were demonstrated. The principles, especially the theory for convective thermal resistance of liquid metal cooling was provided for guiding optimization of the device. A model prototype was then fabricated and tested. Experiments were performed when two simulated hot chips in the closed cabinet worked at different heat loads and different angles with the horizontal plane. It was shown that for the one chip case, the cooling device could maintain the chip temperature to below 85.1 °C at the ambient temperature 20 °C when the heat load was about 122 W. The cooling performance of the device could achieve better when the angle between the cabinet and the horizontal plane varied from 0 °C to 90 °C. With two chips working simultaneously, both chips had close temperature and hot spot did not appear easily when subject to large power, which will help reduce thermal stress and enhance reliability of the system. The practical value of the self-driven liquid metal cooling device is rather evident. Given its reliability, simplicity, and efficiency, such device can possibly be used for heat dissipation of multichip in closed space in the future.

References

References
1.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B. A.
,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
2.
Bessaih
,
R.
, and
Kadja
,
M.
,
2000
, “
Turbulent Natural Convection Cooling of Electronic Components Mounted on a Vertical Channel
,”
Appl. Therm. Eng.
,
20
, pp.
141
154
.10.1016/S1359-4311(99)00010-1
3.
Anandan
,
S. S.
, and
Ramalingam
,
V.
,
2008
, “
Thermal Management of Electronics: A Review of Literature. Thermal Science
,”
Therm. Sci.
,
12
(
2
), pp.
5
26
.10.2298/TSCI0802005A
4.
Sezai
,
I.
, and
Mohamad
,
A. A.
,
2000
, “
Natural Convection From a Discrete Heat Source on the Bottom of a Horizontal Enclosure
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2257
2266
.10.1016/S0017-9310(99)00304-X
5.
Lai
,
Y.
,
Cordero
,
N.
,
Barthel
,
F.
,
Tebbe
,
F.
,
Kuhn
,
J.
,
Apfelbeck
,
R.
, and
Würtenbergeret
,
D.
,
2009
, “
Liquid Cooling of Bright LEDs for Automotive Applications
,”
Appl. Therm. Eng.
,
29
, pp.
1239
1244
.10.1016/j.applthermaleng.2008.06.023
6.
Ma
,
Z. S.
, and
Yao
,
S. G.
,
2009
, “
Experimental Investigation of a Novel Heat Pipe Cold Plate for Electronic Cooling
,”
J. Sci. Ind. Res.
,
68
, pp.
861
865
.
7.
Tierney
,
J. K.
, and
Koczkur
,
E.
,
1971
, “
Free Convection Heat Transfer from a Totally Enclosed Cabinet Containing Simulated Electronic Equipment
,”
IEEE Trans. Parts Hybrids Packag.
,
7
(
3
), pp.
115
123
.10.1109/TPHP.1971.1136422
8.
Avenas
,
Y.
,
Ivanova
,
M.
,
Popova
,
N.
,
Schaeffer
,
C.
, and
Schanen
,
J. L.
,
2002
, “
Thermal Analysis of Thermal Spreaders Used in Power Electronic Cooling
,”
Proceedings of the Industry Applications Conference, 37th IAS Annual Meeting
, Vol.
1
, pp.
216
221
.
9.
Vasiliev
,
L. L.
,
2005
, “
Heat Pipes in Modern Heat Exchangers
,”
Appl. Therm. Eng.
,
25
, pp.
1
19
.10.1016/j.applthermaleng.2003.12.004
10.
Saha
,
M.
,
Feroz
,
C. M.
,
Ahmed
,
F.
, and
Mujib
,
T.
,
2012
, “
Thermal Performance of an Open Loop Closed End Pulsating Heat Pipe
,”
Heat Mass Transfer
,
48
, pp.
259
265
.10.1007/s00231-011-0882-9
11.
Muraoka
,
I.
,
Ramos
,
F. M.
, and
Vlassov
,
V. V.
,
2001
, “
Analysis of the Operational Characteristics and Limits of a Loop Heat Pipe With Porous Element in the Condenser
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2287
2297
.10.1016/S0017-9310(00)00259-3
12.
Xuan
,
Y. M.
, and
Lian
,
W. L.
,
2011
, “
Electronic Cooling Using an Automatic Energy Transport Device Based on Thermomagnetic Effect
,”
Appl. Therm. Eng.
,
31
, pp.
1487
1494
.10.1016/j.applthermaleng.2011.01.033
13.
Misale
,
M.
,
Garibaldi
,
P.
,
Passos
,
J. C.
, and
Bitencourt
,
G. G.
,
2007
, “
Experiments in a Single-phase Natural Circulation Mini-loop
,”
Exp. Therm. Fluid Sci.
,
31
, pp.
111
1120
.10.1016/j.expthermflusci.2006.11.004
14.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Heat-Driven Liquid Metal Cooling Device for the Thermal Management of a Computer Chip
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
4722
4729
.10.1088/0022-3727/40/15/055
15.
Li
,
P. P.
, and
Liu
,
J.
,
2011
, “
Self-driven Electronic Cooling Based on Thermosyphon Effect of Room Temperature Liquid Metal
,”
ASME J. Electron. Packag.
,
133
, p.
041009
.10.1115/1.4005297
16.
“International Technology Roadmap for Semiconductors (ITRS 2005 ed.),” http://www.itrs.net/links/2005itrs/home2005.htm
17.
Deng
,
Y. G.
, and
Liu
,
J.
,
2009
, “
Corrosion Development Between Liquid Metal and Four Typical Metal Substrates Used in Chip Cooling Device
,”
Appl. Phys. A
,
95
, pp.
907
915
.10.1007/s00339-009-5098-1
18.
Lubarsky
,
B.
, and
Kaufman
,
S. J.
,
1956
, “
Review of Experimental Investigations of Liquid Metal Heat Transfer
,” NASA Report No. 1270.
19.
Tu
,
D. Y.
,
1999
,
Fluid Mechanics and Fluid Machine
,
China Building Industry Press
,
Beijing
.
20.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Liquid Metal Cooling in Thermal Management of Computer Chips
,”
Front. Power Eng. China
,
1
(
4
), pp.
384
402
.10.1007/s11708-007-0057-3
21.
Yung
,
K. C.
,
Liem
,
H.
,
Choy
,
H. S.
, and
Lun
,
W. K.
,
2010
, “
Thermal Performance of High Brightness LED Array Package on PCB
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
1266
1272
.10.1016/j.icheatmasstransfer.2010.07.023
22.
Liu
,
J.
, and
Zhou
,
Y. X.
,
2002
, “
A Computer Chip Cooling Method Which Uses Low Melting Point Metal and Its Alloys as the Cooling Fluid
,” China Patent No. 021314195.
23.
Deng
,
Y. G.
, and
Liu
,
J.
,
2010
, “
A liquid Metal Cooling System for the Thermal Management of High Power LEDs
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
788
791
.10.1016/j.icheatmasstransfer.2010.04.011
You do not currently have access to this content.