In this paper, two different configurations of multiple microchannel heat sinks, with fluid flow, are investigated for heat removal: straight and U-shaped channel designs. Numerical models are utilized to study the multiphysics behavior in the microchannels and these are validated by comparisons with experimental results. The main focus of this work is on the design and optimization of these systems and to outline the methodology that may be used for other similar thermal systems. Three responses, including thermal resistance, pressure drop, and maximum temperature, are parametrically modeled with respect to various design variables and operating conditions such as dimensions of the channels, total number of channels, and flow rate. Multi-objective optimization problems, which minimize the thermal resistance and the pressure drop simultaneously, are formulated and studied. Physical constraints in terms of channel height, maximum temperature, and pressure are further investigated. The Pareto frontiers are studied and the trade-off behavior between the thermal resistance and the pressure drop are discussed. Characteristic results are presented and discussed.

References

References
1.
Kou
,
H. S.
,
Lee
,
J. J.
, and
Chen
,
C. W.
,
2008
, “
Optimum Thermal Performance of Microchannel Heat Sink by Adjusting Channel Width and Height
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
577
582
.10.1016/j.icheatmasstransfer.2007.12.002
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for Vlsi
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
3.
Steinke
,
M. E.
,
Kandlikar
,
S. G.
,
Magerlein
,
J. H.
,
Colgan
,
E. G.
, and
Raisanen
,
A. D.
,
2006
, “
Development of an Experimental Facility for Investigating Single-Phase Liquid Flow in Microchannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
41
52
.10.1080/01457630500523774
4.
Wei
,
X. J.
, and
Joshi
,
Y.
,
2004
, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packag.
,
126
(
1
), pp.
60
66
.10.1115/1.1647124
5.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
6.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2007
, “
Design Optimization of Micro-Channel for Micro Electronic Cooling
,”
ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM2007) Puebla
,
Mexico
, Paper No. ICNMM2007-30053, pp.
201
207
.
7.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
,
2004
, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4215
4231
.10.1016/j.ijheatmasstransfer.2004.04.018
8.
Li
,
Z. G.
,
Huai
,
X. L.
,
Tao
,
Y. J.
, and
Chen
,
H. Z.
,
2007
, “
Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2803
2814
.10.1016/j.applthermaleng.2007.02.007
9.
Lin
,
P. T.
,
Jaluria
,
Y.
, and
Gea
,
H. C.
,
2009
, “
Parametric Modeling and Optimization of Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011011
.10.1115/1.3063689
10.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2010
, “
Systematic Strategy for Modeling and Optimization of Thermal Systems With Design Uncertainties
,”
Front. Heat Mass Transfer
,
1
, p.
013003
.
11.
Zhang
,
J.
,
Prakash
,
S.
, and
Jaluria
,
Y.
,
2010
, “
An Experimental Study on the Effect of Configuration of Multiple Microchannels on Heat Removal for Electronic Cooling
,”
2010 14th International Heat Transfer Conference (IHTC14)
,
Washington, DC
, Paper No. IHTC14-22234, pp.
473
480
.
12.
Zhang
,
J.
,
Jaluria
,
Y.
,
Zhang
,
T.
, and
Jia
,
L.
,
2013
, “
Combined Experimental and Numerical Study for Multiple Microchannel Heat Transfer System
,”
Numer. Heat Transfer, Part B
64
, pp.
1
13
.10.1080/10407790.2013.791781
13.
Zhang
,
J.
and
Jaluria
,
Y.
,
2011
, “
Combined Experimental and Numerical Study of a New Configuration of Multiple Microchannel Heat Sink for Heat Removal
,”
International Mechanical Engineering Congress and Exposition
,
Denver, CO
, Paper No. IMECE2011-62535.
14.
Van Beers
,
W. C. M.
, and
Kleijnen
,
J. P. C.
,
2003
, “
Kriging for Interpolation in Random Simulation
,”
J. Oper. Res. Soc.
,
54
(
3
), pp.
255
262
.10.1057/palgrave.jors.2601492
15.
Van Beers
,
W. C. M.
, and
Kleijnen
,
J. P. C.
,
2004
,
Proceedings of the 36th Conference on Winter Simulation
, pp.
113
121
.
16.
Dill
,
E. H.
,
2006
,
Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity
,
CRC Press
,
Boca Raton, FL
.
17.
Kandlikar
,
S. G.
,
2003
, “
Microchannels and Minichannels: History, Terminology, Classification and Current Research Needs
,”
ASME 2003 1st International Conference on Microchannels and Minichannels (ICMM2003)
,
Rochester, NY
, Paper No. ICMM2003-1000, pp.
1
6
.
18.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms of Wiley-Interscience Series in Systems and Optimization
,
John Wiley & Sons, LTD
,
Chichester, UK
, pp.
50
57
.
19.
Parker Hannifin Corp.
, “Data Sheet of Miniature Diaphragm Pumps: LTC Series 650mLPM Free Flow Mini Pumps (liquids),” Available at: http://www.parker.com/precisionfluidics
You do not currently have access to this content.