A common assumption in basic heat exchanger design theory is that fluid is distributed uniformly at the inlet of the exchanger on each fluid side and throughout the core. However, in reality, uniform flow distribution is never achieved in a heat exchanger and is referred to as flow maldistribution. Flow maldistribution is generally well understood for the macrochannel system. But it is still unclear whether the assumptions underlying the flow distribution in conventional macrochannel heat exchangers hold good for microchannel system. In this regard, extensive numerical simulations are carried out in a “U” type parallel microchannel system in order to study flow and heat transfer maldistribution and validated with in-house experimental data. A detailed parametric analysis is carried out to characterize flow maldistribution in a microchannel system and to study the effect of geometrical factors such as number of channels, n, Area of cross section of the channel Ac, manifold cross section area Ap, and flow parameter such as Reynolds number, Re, on the pressure and temperature distribution. In order to minimize the variation in pressure and to reduce temperature hot spots in the microchannel, a response surface based surrogate approximation and a gradient based search algorithm are used to arrive at the best configuration of microchannel cooling system. A three level factorial design involving three parameters namely Ac/Ap, Re, n are considered. The results from the optimization indicate that the case of n = 7, Ac/Ap = 0.69, and Re = 100 is the best possible configuration to alleviate flow maldistribution and hotspot formation in microchannel cooling system.

References

References
1.
Bassiouny
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers-I, U Type Arrangement
,”
Chem. Eng. Sci.
,
39
, pp.
693
700
.10.1016/0009-2509(84)80176-1
2.
Choi
,
S. H.
,
Shin
,
S.
, and
Cho
,
Y. I.
,
1993
, “
The Effect of Area Ratio n the Flow Distribution in Liquid Cooling Module Manifolds for Electronic Packaging
,”
Int. Commun. Heat Mass Transfer
,
20
, pp.
221
234
.10.1016/0735-1933(93)90050-6
3.
Choi
,
S. H.
,
Shin
,
S.
, and
Cho
,
Y. I.
,
1993
, “
The Effects of the Reynolds Number and Width Ratio on the Flow Distribution in Manifolds of Liquid Cooling Modules for Electronic Packaging
,”
Int. J. Commun. Heat Transfer
,
20
, pp.
607
617
.10.1016/0735-1933(93)90073-5
4.
Kim
,
S.
,
Choi
,
E.
, and
Cho
,
Y. I.
,
1995
, “
The Effect of Header Shapes on the Flow Distribution in a Manifold for Electronic Packaging Applications
,”
Int. Commun. Heat Mass Transfer
,
22
(
3
), pp.
329
341
.10.1016/0735-1933(95)00024-S
5.
Commenge
,
J. M.
,
Falk
,
L.
,
Corriou
,
J. P.
, and
Matlosz
,
M.
,
2002
, “
Optimial Design for Flow Uniformity in Microchannel Reactors
,”
AIChE J.
,
48
(
2
), pp.
345
358
.10.1002/aic.690480218
6.
Delsman
,
E. R.
,
Pierik
,
A.
, and
De Croon
,
M. H. J. M.
,
Kramer
,
G. J.
,
Schouten
,
J. C.
,
2004
, “
Microchannel Plate Geometry Optimization for Even Flow Distribution at High Flow Rates
,”
Chem. Eng. Res. Des.
,
82
(A
2
), pp.
267
273
.10.1205/026387604772992864
7.
Tonomura
,
O.
,
Tanaka
,
S.
,
Noda
,
M.
,
Kano
,
M.
,
Hasebe
,
S.
,
Hashimoto
,
I.
,
2004
, “
CFD-Based Optimal Design of Manifold in Plate Fin Microdevices
,”
Chem. Eng. J.
,
101
, pp.
397
402
.10.1016/j.cej.2003.10.022
8.
Amador
,
C.
,
Gavriilidis
,
A.
, and
Angeli
,
P.
,
2004
, “
Flow Distribution in Different Microreactor Scale-Out Geometries and the Effect of Manufacturing Tolerances and Channel Blockage
,”
Chem. Eng. J.
,
101
, pp.
379
390
.10.1016/j.cej.2003.11.031
9.
Jones
,
B. J.
,
Lee
,
P.
, and
Garimella
,
S. V.
,
2008
, “
Infrared Micro-Particle Image Velocimetry Measurements and Predictions of Flow Distribution in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1877
1887
.10.1016/j.ijheatmasstransfer.2007.06.034
10.
Chein
,
R.
, and
Chen
,
J.
,
2009
, “
Numerical Study of the Inlet/Outlet Arrangement Effect on Microchannel Heat Sink Performance
,”
Int. J. Therm. Sci.
,
48
, pp.
1627
1638
.10.1016/j.ijthermalsci.2008.12.019
11.
Seghal
,
S. S.
,
Murugesan
,
K.
, and
Mohapatra
,
S. K.
,
2011
, “
Experimental Investigation of the Effect of Flow Arrangements on the Performance of a Micro-Channel Heat Sink
,”
Exp. Heat Transfer
,
24
, pp.
215
233
.10.1080/08916152.2010.523808
12.
Kumaraguruparan
,
G.
,
Manikanda Kumaran
,
R.
,
Sornakumar
,
T.
, and
Sundararajan
,
T.
,
2011
, “
A Numerical and Experimental Investigation of Flow Maldistribution in a Microchannel Heat Sink
,”
Int. J. Commun. Heat Transfer
,
38
, pp.
1349
1353
.10.1016/j.icheatmasstransfer.2011.08.020
13.
Samad
,
A.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2010
, “
Shape Optimization of a Dimpled Channel to Enhance Heat Transfer Using a Weighted-Average Surrogate Model
,”
Heat Transfer Eng.
,
31
, pp.
1114
1124
.10.1080/01457631003640453
14.
Kandlikar
,
S. G.
,
2003
, “
Microchannels and Minchannels—History, Terminology, Classification and Current Research Needs. First International Conference on Microchannels and Minichannels
,” ICMM, Rochester, NY.
15.
Samad
,
A.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2007
, “
Multi-Objective Optimization of a Dimpled Channel for Heat Transfer Augmentation
,”
Heat Mass Transfer
,
45
, pp.
207
217
.10.1007/s00231-008-0420-6
16.
Samad
,
A.
,
Shin
,
D. Y.
,
Kim
,
K. Y.
,
Goel
,
T.
, and
Haftka
,
R. T.
,
2007
, “
Surrogate Modeling for Optimization of a Dimpled Channel to Enhance Heat Transfer Performance
,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
667
670
.10.2514/1.30211
17.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
, pp.
369
395
.10.1007/s00158-003-0368-6
18.
Pentium Processor Thermal Design Guidelines Rev. 2.0
,
1996
, Application note Copyright© Intel Corporation.
19.
Collette
,
Y.
, and
Siarry
P.
,
2003
,
Multiobjective Optimization, Principles and Case Study
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.